В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
Высота боковой грани МАВ - прямая МА, которая из тр-ка МАД равна: МА=√(МД²+АД²)=√(15²+10²)=√325=5√13 дм. Высота боковой грани МВС - прямая МС, которая из тр-ка МСД равна: МС=√(МД²+СД)=√(15²+20²=25 дм. Площадь ΔМАВ: S1=AB·MA/2=20·5√13/2=50√13 дм². Площадь ΔМВС: S2=ВС·МС/2=10·25/2=125 дм². Площадь двух граней, прилежащих к высоте МД: S3=(АД+СД)·МД/2=(10+20)·15/2=225 дм². Площадь основания: S4=АВ·АД=20·10=200 дм². Общая площадь - это сумма всех найденных площадей: S=50√13+125+225+200=50(1+11√13) дм³ - это ответ.
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.
МА=√(МД²+АД²)=√(15²+10²)=√325=5√13 дм.
Высота боковой грани МВС - прямая МС, которая из тр-ка МСД равна:
МС=√(МД²+СД)=√(15²+20²=25 дм.
Площадь ΔМАВ: S1=AB·MA/2=20·5√13/2=50√13 дм².
Площадь ΔМВС: S2=ВС·МС/2=10·25/2=125 дм².
Площадь двух граней, прилежащих к высоте МД:
S3=(АД+СД)·МД/2=(10+20)·15/2=225 дм².
Площадь основания: S4=АВ·АД=20·10=200 дм².
Общая площадь - это сумма всех найденных площадей:
S=50√13+125+225+200=50(1+11√13) дм³ - это ответ.