S(пп) = 122 см²
Объяснение:
Дано:
a = 4 cm
c = 3 cm
Площадь боковой поверхности: S(бп) = 66 cm²
Найти:
Площадь полной поверхности: S(пп) = ?
Для начала найдём вторую сторону основания b:
Для этого воспользуемся формулой:
S(бп) = P(осн)*с, где P(осн) - периметр основания = 2(a+b), ⇒
S(бп) = 2(a+b)*c
подставим имеющиеся значения:
66 = 2(4+b)*3
66 = 6(4+b)
66 = 24 + 6b
6b = 66-24
6b = 42
b = 42/6
b = 7 см
Площадь полной поверхности прямоугольного параллелепипеда S(пп) определяется по формуле:
S(пп) = 2(ab+bc+ac)
S(пп) = 2(4*7 + 7*3 + 4*3)
S(пп) = 2(28+21+12)
S(пп) = 2*61
S(пп) = 122 см²
Объяснение:
Дано:
a = 4 cm
c = 3 cm
Площадь боковой поверхности: S(бп) = 66 cm²
Найти:
Площадь полной поверхности: S(пп) = ?
Для начала найдём вторую сторону основания b:
Для этого воспользуемся формулой:
S(бп) = P(осн)*с, где P(осн) - периметр основания = 2(a+b), ⇒
S(бп) = 2(a+b)*c
подставим имеющиеся значения:
66 = 2(4+b)*3
66 = 6(4+b)
66 = 24 + 6b
6b = 66-24
6b = 42
b = 42/6
b = 7 см
Площадь полной поверхности прямоугольного параллелепипеда S(пп) определяется по формуле:
S(пп) = 2(ab+bc+ac)
подставим имеющиеся значения:
S(пп) = 2(4*7 + 7*3 + 4*3)
S(пп) = 2(28+21+12)
S(пп) = 2*61
S(пп) = 122 см²
Угол ALD равен углу ВАL – внутренние накрест лежащие.
Значит угол LAD равен углу ALD. Треугольник ALD – равнобедренный.
Треугольник CLK подобен треугольнику ALD по двум углам.
Углы CLK и ALD – вертикальные, угол ADL равен углу LCK– внутренние накрест лежащие.
Треугольник CLK также равнобедренный.
CL=СK=8.
Так как периметр CLK равен 30, то LK=30–8–8=14.
AL=AK–CK=49–14=35.
Из подобия треугольников ALD и CLK пропорция:
AL: LK=AD:CL; 35:14=AD:8; AD=20; CD=CL+LD=8+20=28.
P=(AD+CD)·2=(20+28)·2=96.