1) Прямая ОА пересекает окружность в двух точках, так как прямая бесконечна. Луч ОА пересекает окружность в одной точке, так как луч бесконечен в сторону точки А. Отрезок ОА не пересекает окружность, так как находится внутри нее.
2) Представим, что из точки на окружности К проведен радиус КОВ и хорда КС, равная радиусу. Проведем отрезок СО, который будет тоже являться радиусом окружности, и получим равносторонний треугольник КОС, в котором все стороны равны радиусу окружности. Все угла в равностороннем треугольнике равны 180/3=60 градусов.
ВАС = 30°;
ВСА = 30°;
АВС = 120°.
Объяснение:
Дано:
ΔABD
BD-высота
АВ = 24,2 см
BD=12,1 см
Найти:
ВАС,ВСА, АВС
Высота разбивает равнобедренный треугольник на 2 прямоугольных равных между собой.
В прямоугольном ΔABD катет ВD = 12,1 см, а гипотенуза АВ = 24,2 см.
Если 24,2 см : 12,1 см = 2
Получается, что катет равен половине гипотенузы, а это возможно если этот катет лежит против угла в 30°.
ВАС = ВСА = 30°.
Сумма всех углов треугольника всегда равна 180°.
Отсюда:
АВС = 180° - (30° + 30°) = 120°.
ВАС = 30°;
ВСА = 30°;
АВС = 120°.
1) Прямая ОА пересекает окружность в двух точках, так как прямая бесконечна. Луч ОА пересекает окружность в одной точке, так как луч бесконечен в сторону точки А. Отрезок ОА не пересекает окружность, так как находится внутри нее.
2) Представим, что из точки на окружности К проведен радиус КОВ и хорда КС, равная радиусу. Проведем отрезок СО, который будет тоже являться радиусом окружности, и получим равносторонний треугольник КОС, в котором все стороны равны радиусу окружности. Все угла в равностороннем треугольнике равны 180/3=60 градусов.
Объяснение: