Окружность 1.Свойства окружности. 1) Диаметр, перпендикулярный хорде, делит ее пополам. 2) Диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде. 3) Серединный перпендикуляр к хорде проходит через центр окружности. 4) Равные хорды удалены от центра окружности на равные расстояния. 5) Хорды окружности, удаленные от центра на равные расстояния, равны. 6) Окружность симметрична относительно любого своего диаметра. 7) Дуги окружности, заключенные между параллельными хордами, равны. 8) Из двух хорд больше та, которая менее удалена от центра. 9) Диаметр есть наибольшая хорда окружности. 2.Замечательное свойство окружности. Геометрическое место точек M, из которых отрезок AB виден под прямым углом (AMB = 90°), есть окружность с диаметром AB без точек A и B. 3.Свойство серединных перпендикуляров к сторонам треугольника. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром окружности, описанной около треугольника. 4.Линия центров двух пересекающихся окружностей перпендикулярна их общей хорде. 5.Центр окружности, описанной около прямоугольного треугольника — середина гипотенузы. Это нужно запомнить и знать.Окружность симметрична относительно центра и относительно любого своего диаметра. :)
- проводим перпендикуляр ВВ1 на горизонтальную сторону угла;
ВВ1 и будет одной из высот ещё не построенного треугольника АВС;
- поскольку треугольник АВ1В равнобедренный прямоугольный, то его медиана B1C2, проведённая из вершины прямого угла и задаёт направление будущей второй высоты ∆АВС, проведённой к стороне АВ. Заодно по пути заметим, что длина этой медианы равна 3.Где же искать вершину С?
Пока нам известно, что точка Н где-то на высоте ВВ1, направление СН перпендикулярно прямой АВ, СН=3 ( как и отрезок В1С2). Где Н? Где С?
Построив параллелограмм В1С2НС, мы и обнаружим вершину С и вторую высоту (СС1) треугольника АВС.
Поделив медиану С2С на три равные части, легко отыскать точку М.
Из точек С2, М, К опустим перпендикуляры на сторону АС. Построим треугольник АКС, площадь которого требуется найти в задаче.
ММ1:С2D = 2:3
ММ1 = C2D = ∙ 1,5 =
C2D = HB1 = B1C = 1,5
Средняя линия КК1 трапеции М1МНВ1 равна полусумме ММ1 и НВ1
КК1 = 0,5 × (1,5
АС = АВ1 + В1С = 31,5
S∆АКС = 0,5×АС×КК1 = 0,5×4,5
ответ: 5,625
Решить уравнение
(х + 4)(х + 5)3 = (х + 5)(х + 4)3
Решение.
(х + 4)(х + 5)3 - (х + 5)(х + 4)3= 0;
(х + 4)(х + 5)((х + 5)2 – (х + 4)2) = 0;
(х + 4)(х + 5)(х + 5 – х – 4)(х + 5 + х + 4) = 0;
(х + 4)(х + 5)(2х + 9) = 0.
Произведение двух или нескольких выражений равно нулю, если значение хотя бы одного из этих выражений равно нулю, а другие при этом не теряют смысла.
Осталось проверить, есть ли решения среди значений значений х, отличных от -4 и -5.
Если обе части этого уравнения разделить на одно и то же число (x+4)(x+5), не равное нулю, то получим уравнение, равносильное данному на множестве чисел, не равных ни -5, ни -4.
(х + 5)2 = (х +4)2
Квадраты чисел равны в том и только в том случае, если эти числа либо равны, либо противоположны.
1.Свойства окружности.
1) Диаметр, перпендикулярный хорде, делит ее пополам.
2) Диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.
3) Серединный перпендикуляр к хорде проходит через центр окружности.
4) Равные хорды удалены от центра окружности на равные расстояния.
5) Хорды окружности, удаленные от центра на равные расстояния, равны.
6) Окружность симметрична относительно любого своего диаметра.
7) Дуги окружности, заключенные между параллельными хордами, равны.
8) Из двух хорд больше та, которая менее удалена от центра.
9) Диаметр есть наибольшая хорда окружности.
2.Замечательное свойство окружности. Геометрическое место точек M, из которых отрезок AB виден под прямым углом (AMB = 90°), есть окружность с диаметром AB без точек A и B.
3.Свойство серединных перпендикуляров к сторонам треугольника. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром окружности, описанной около треугольника.
4.Линия центров двух пересекающихся окружностей перпендикулярна их общей хорде.
5.Центр окружности, описанной около прямоугольного треугольника — середина гипотенузы.
Это нужно запомнить и знать.Окружность симметрична относительно центра и относительно любого своего диаметра.
:)
- откладываем АВ=6 (любые 6 равных отрезков);
- проводим перпендикуляр ВВ1 на горизонтальную сторону угла;
ВВ1 и будет одной из высот ещё не построенного треугольника АВС;
- поскольку треугольник АВ1В равнобедренный прямоугольный, то его медиана B1C2, проведённая из вершины прямого угла и задаёт направление будущей второй высоты ∆АВС, проведённой к стороне АВ. Заодно по пути заметим, что длина этой медианы равна 3.Где же искать вершину С?
Пока нам известно, что точка Н где-то на высоте ВВ1, направление СН перпендикулярно прямой АВ, СН=3 ( как и отрезок В1С2). Где Н? Где С?
Построив параллелограмм В1С2НС, мы и обнаружим вершину С и вторую высоту (СС1) треугольника АВС.
Поделив медиану С2С на три равные части, легко отыскать точку М.
Из точек С2, М, К опустим перпендикуляры на сторону АС. Построим треугольник АКС, площадь которого требуется найти в задаче.
ММ1:С2D = 2:3
ММ1 = C2D = ∙ 1,5 =
C2D = HB1 = B1C = 1,5
Средняя линия КК1 трапеции М1МНВ1 равна полусумме ММ1 и НВ1
КК1 = 0,5 × (1,5
АС = АВ1 + В1С = 31,5
S∆АКС = 0,5×АС×КК1 = 0,5×4,5
ответ: 5,625
Решить уравнение
(х + 4)(х + 5)3 = (х + 5)(х + 4)3
Решение.
(х + 4)(х + 5)3 - (х + 5)(х + 4)3= 0;
(х + 4)(х + 5)((х + 5)2 – (х + 4)2) = 0;
(х + 4)(х + 5)(х + 5 – х – 4)(х + 5 + х + 4) = 0;
(х + 4)(х + 5)(2х + 9) = 0.
Произведение двух или нескольких выражений равно нулю, если значение хотя бы одного из этих выражений равно нулю, а другие при этом не теряют смысла.
Исходное уравнение равносильно совокупности уравнений:
ответ: -5; -4,5; -4.
Один из моих учеников предложил другой путь.
(х + 4)(х + 5)3 = (х + 5)(х + 4)3
Легко видеть, что числа -4 и -5 являются решениями данного уравнения:
(-4 + 4)(-4 + 5)3 = (-4 + 5)(-4 + 4)3 - верное равенство;
(-5 +4)(-5 + 5)3 = (-5 + 5)(-5 +4)3 - тоже верное равенство.
Осталось проверить, есть ли решения среди значений значений х, отличных от -4 и -5.
Если обе части этого уравнения разделить на одно и то же число (x+4)(x+5), не равное нулю, то получим уравнение, равносильное данному на множестве чисел, не равных ни -5, ни -4.
(х + 5)2 = (х +4)2
Квадраты чисел равны в том и только в том случае, если эти числа либо равны, либо противоположны.
х + 5 = х + 4 или х + 5 = -х -4
или х = -4,5
ответ: -5; -4,5; -4.