Радиусом описанной окружности в данном случае будет половина гипотенузы прямоугольного треугольника. Так как вписанный в окружность прямой угол опирается на диаметр этой окружности. Ищем гипотенузу по известной теореме ПифагораAB=16R=AB/2R=8 №4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD. Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны) Отсюда AP/AM1 = AC1/AB; 8/6 = x/9; x = 12;
Вписанная в ромб окружность делит его сторону на отрезки 4,5 см и 2 см. Вычисли длину вписанной в ромб окружности (π=3,14).
(ответ округли до сотых.)
Объяснение:
Пусть ABCD-ромб, точка O – это центр вписанной окружности , F — точка касания окружности со стороной ромба AB.
Тогда ОF⊥ АВ, по свойству касательной, AF=4,5 см , BF=2 см.
Δ ВОА-прямоугольный ( диагонали ромба взаимно-перпендикулярны)Т.к. высота в прямоугольном треугольнике есть среднее пропорциональное между проекциями, то
№4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD.
Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны)
Отсюда AP/AM1 = AC1/AB;
8/6 = x/9;
x = 12;
Вписанная в ромб окружность делит его сторону на отрезки 4,5 см и 2 см. Вычисли длину вписанной в ромб окружности (π=3,14).
(ответ округли до сотых.)
Объяснение:
Пусть ABCD-ромб, точка O – это центр вписанной окружности , F — точка касания окружности со стороной ромба AB.
Тогда ОF⊥ АВ, по свойству касательной, AF=4,5 см , BF=2 см.
Δ ВОА-прямоугольный ( диагонали ромба взаимно-перпендикулярны)Т.к. высота в прямоугольном треугольнике есть среднее пропорциональное между проекциями, то
r=ОF=√BF*FA,
r=√(4,5*2)=√9=3 (см).
Длина окружности С=2пr
С=2•3,14•3= 18,84 ( см).