Т.к. диагональ АС перпендикулярна стороне СЕ, получаем прямоугольный треуг-ик АСЕ. Рассмотрим его. Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, находим неизвестный угол ЕАС: <EAC=90-<AEC=90-45=45° Т.е. прямоугольный АСЕ - равнобедренный, т.к. углы при его основании АЕ равны. АС=ЕС. Высота СН равнобедренного треугольника, проведенная к основанию, является также медианой. Значит АН=ЕН. Рассмотрим прямоугольные треуг-ики АВС (он прямоугольный, т.к. трапеция прямоугольная) и АНС. Они равны по одному из признаков равенства прямоугольных треугольников: если гипотенуза и катет одного прямоугольного треуг-ка соответственно равны гипотенузе и катету другого, то такие треуг-ки равны. В нашем случае: АС - общая гипотенуза АВ=СН (АВ является по сути той же высотой трапеции). Значит, ВС=АН Но АН=1/2АЕ, значит ВС=1/2АЕ.
Выразим площадь параллелограмма S, построив его высоту СН: S ABCE=AE*CH. Выразим площадь прямоугольника S1: S1 А1В1С1Е1=А1Е1*А1В1 Но А1Е1=АЕ, поэтому можно записать так: S1 А1В1С1Е1=А1Е1*А1В1=АЕ*А1В1 Зная, что S1 больше S в 2 раза, можно записать: S1=2S, или АЕ*А1В1=2*AE*CH, отсюда А1В1=2СН, СН=1/2А1В1 Помня, что А1В1=СЕ, можно записать для СН так: СН=1/2А1В1=1/2СЕ Т.е. в прямоугольном треуг-ке СНЕ на рис.1 катет СН равен половине гипотенузы СЕ. Используем одно из свойств прямоугольных треугольников: если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°. Значит <CEH=30°. Тогда <AEC=180-30=150°
<EAC=90-<AEC=90-45=45°
Т.е. прямоугольный АСЕ - равнобедренный, т.к. углы при его основании АЕ равны. АС=ЕС.
Высота СН равнобедренного треугольника, проведенная к основанию, является также медианой. Значит АН=ЕН.
Рассмотрим прямоугольные треуг-ики АВС (он прямоугольный, т.к. трапеция прямоугольная) и АНС. Они равны по одному из признаков равенства прямоугольных треугольников: если гипотенуза и катет одного прямоугольного треуг-ка соответственно равны гипотенузе и катету другого, то такие треуг-ки равны. В нашем случае:
АС - общая гипотенуза
АВ=СН (АВ является по сути той же высотой трапеции).
Значит, ВС=АН
Но АН=1/2АЕ, значит
ВС=1/2АЕ.
S ABCE=AE*CH.
Выразим площадь прямоугольника S1:
S1 А1В1С1Е1=А1Е1*А1В1
Но А1Е1=АЕ, поэтому можно записать так:
S1 А1В1С1Е1=А1Е1*А1В1=АЕ*А1В1
Зная, что S1 больше S в 2 раза, можно записать:
S1=2S, или
АЕ*А1В1=2*AE*CH, отсюда
А1В1=2СН, СН=1/2А1В1
Помня, что А1В1=СЕ, можно записать для СН так:
СН=1/2А1В1=1/2СЕ
Т.е. в прямоугольном треуг-ке СНЕ на рис.1 катет СН равен половине гипотенузы СЕ. Используем одно из свойств прямоугольных треугольников: если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°. Значит
<CEH=30°. Тогда <AEC=180-30=150°