Пусть стороны трапеции будут a и c, меньшее основание - b? большее основание - d. Отрезки, на которые делится средняя линия диагональю, проходящей из верхнего левого угла в правый нижний - x и y. Тогда имеем: х - y = 16, y = х -16. d =2*x (так как х - средняя линия треугольника с большим основанием. b =2*y (так как y - средняя линия треугольника с меньшим основанием трапеции. Тогда b = 2(х-16). В равнобочной трапеции высота, опущенная на большее основание, делит его на отрезки, равные полуразности и полусумме оснований. Полуразность оснований лежит против угла 30° в прямоугольном треугольнике, где гипотенуза - боковая сторона трапеции. Тогда (d-b)/2 = 2(x-x+16)/2 = 16. Итак, боковая сторона равна 16*2=32см.(как гипотенуза). Сумма двух оснований равна 144-2*32 = 80см. Имеем: d+b = 80cм, а d-b = 32см, отсюда 2d=112, d = 56cм. Ну и b = 80-56=24cм. ответ: основания трапеции равны 24см и 56см. Рисунок добавлю.
Боковые стороны трапеции лежат на прямых a и b. Эти прямые не параллельны и лежат в одной плоскости, значит, они пересекаются. Тогда через эти прямые можно провести единственную плоскость, обозначим её за β. Плоскость β и будет плоскостью трапеции, так как все 4 вершины трапеции лежат на прямых a и b и лежат в β.
Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости. Из того, что прямая a параллельна плоскости α, следует, что в плоскости α существует прямая a', такая, что a || a'. Аналогично, из параллельности b и α следует, что в α существует прямая b', такая, что b || b', При этом a' и b' не совпадают, так как a и b не параллельны.
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Из того, что a || a' и b || b' и того, что a и b пересекаются, следует, что α || β, что и требовалось доказать.
х - y = 16, y = х -16. d =2*x (так как х - средняя линия треугольника с большим основанием. b =2*y (так как y - средняя линия треугольника с меньшим основанием трапеции. Тогда b = 2(х-16). В равнобочной трапеции высота, опущенная на большее основание, делит его на отрезки, равные полуразности и полусумме оснований. Полуразность оснований лежит против угла 30° в прямоугольном треугольнике, где гипотенуза - боковая сторона трапеции. Тогда (d-b)/2 = 2(x-x+16)/2 = 16. Итак, боковая сторона равна 16*2=32см.(как гипотенуза). Сумма двух оснований равна 144-2*32 = 80см.
Имеем: d+b = 80cм, а d-b = 32см, отсюда 2d=112, d = 56cм. Ну и b = 80-56=24cм.
ответ: основания трапеции равны 24см и 56см.
Рисунок добавлю.
Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости. Из того, что прямая a параллельна плоскости α, следует, что в плоскости α существует прямая a', такая, что a || a'. Аналогично, из параллельности b и α следует, что в α существует прямая b', такая, что b || b', При этом a' и b' не совпадают, так как a и b не параллельны.
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Из того, что a || a' и b || b' и того, что a и b пересекаются, следует, что α || β, что и требовалось доказать.