ABCD - параллелограмм AK и KD - биссектрисы L BAK = L KAD = L A \2 = L 1 L AKB = KAD = L A \2 = L 1 L ADK = L KDC = L D \2 = L 2 Треугольник AKD: L AKD = 180 - (L AKB + L ADK) = 180 - (L 1 + L 2) Треугольник KCD: L DKC = 180 - (L KDC + L C) L C = L A = 2 * L1 L KDC = L 2 => L DKC = 180 - (L 2 + 2 * L 1) Угол BKD (сумма двух углов) равна: L BKD = L AKB + L AKD = L 1 + 180 - (L 1 + L 2) = 180 - L 2 Тогда: L DKC = 180 - L BKD = 180 - (180 - L 2) = L 2 => L DKC = L KDC => в треугольнике DKC KC = CD Но в параллелограмме AB = CD и ранее найдено AB = BK => BK = KC => точка С - середина ВС
Секущая - прямая по отношению к двум прямым, которая пересекает их в двух точках. При пересечении двух прямых секущей образуются накрест лежащие, односторонние и соответственные углы.Всего четыре пары.Решим на примере двух пар (тк все 4 пары попарно равны).
∠1 и ∠3 — вертикальные, следовательно, они равны. ∠2 и ∠4 — вертикальные, следовательно, они равны. ∠1 и ∠2 — смежные углы, ∠1 + ∠2 = 180°. ∠4 и ∠3 — смежные углы, ∠3 + ∠4 = 180°. Получаем, что ∠1 + ∠2 + ∠3 + ∠4 = 360°
Пусть градусная мера первого угла х, тогда второго — 4х. Составим уравнение:
AK и KD - биссектрисы
L BAK = L KAD = L A \2 = L 1
L AKB = KAD = L A \2 = L 1
L ADK = L KDC = L D \2 = L 2
Треугольник AKD:
L AKD = 180 - (L AKB + L ADK) = 180 - (L 1 + L 2)
Треугольник KCD:
L DKC = 180 - (L KDC + L C)
L C = L A = 2 * L1
L KDC = L 2
=>
L DKC = 180 - (L 2 + 2 * L 1)
Угол BKD (сумма двух углов) равна:
L BKD = L AKB + L AKD = L 1 + 180 - (L 1 + L 2) = 180 - L 2
Тогда:
L DKC = 180 - L BKD = 180 - (180 - L 2) = L 2
=>
L DKC = L KDC =>
в треугольнике DKC
KC = CD
Но в параллелограмме AB = CD и ранее найдено AB = BK =>
BK = KC =>
точка С - середина ВС
Секущая - прямая по отношению к двум прямым, которая пересекает их в двух точках. При пересечении двух прямых секущей образуются накрест лежащие, односторонние и соответственные углы.Всего четыре пары.Решим на примере двух пар (тк все 4 пары попарно равны).
∠1 и ∠3 — вертикальные, следовательно, они равны. ∠2 и ∠4 — вертикальные, следовательно, они равны. ∠1 и ∠2 — смежные углы, ∠1 + ∠2 = 180°. ∠4 и ∠3 — смежные углы, ∠3 + ∠4 = 180°. Получаем, что ∠1 + ∠2 + ∠3 + ∠4 = 360°
Пусть градусная мера первого угла х, тогда второго — 4х. Составим уравнение:
х + 4х + х + 4х = 360, 10х=360, х = 36;
4х = 36 • 4 = 144. Имеем: ∠1 = 36°; ∠2 = 144°; ∠3 = 36°; ∠4 = 144°.
ответ: 36°; 144°.
Рисунок приблизительный,углы не обозначены.