Ну зачем же так кричать :))) устная же задачка. Сечение это будет треугольником, причем равнобедренным, и основанием у него будет диагональ квадрата - который лежит в основании, со стороной 4.
Дальше задача решается в одно действие - дело в том, что проекция сечения на основание - это половина этого самого квадрата в основании, со стороной 4, то есть равнобедренный прямоугольный треугольник, образованый двумя сторонами основания и диаголналью. Площадь проекци сечения равна 4*4/2 = 8. А площадь саомго сечения равна 8/cos(45) = 8*корень(2)
Рассмотрим основание повнимательнее. Трапеция ABCD, AD = 42; BC = 22; AB = CD = 26; опустим препендикуляр на AD из точки В, это ВК. Треугольник АВК - прямоугольный с катетом АК = (42 - 22)/2 = 10 и гипотенузой АВ = 26, отсюда ВК = 24; (Пифагорова тройка 10,24,26)
таким образом, высота трапеции ABCD ВК = 24, а площадь (22 + 42)*24/2 = 768.
Кроме того, нам надо вычислить диагональ AC = BD. Рассмотрим прямоугольный треугольник BKD. ВК = 24; KD = 42 - 10 = 32; очевидно, что это треугольник, подобный "египетскому" (3,4,5), у которого все стороны умножены на 8, то есть (24, 32, 40), поэтому AC = BD = 40.
Под диагональным сечением я буду понимать прямоугольник АСС1А1. Поскольку АС = 40, то АА1 = 400/40 = 10 - высота призмы.
Периметр трапеции ABCD (42 + 22 +2*26) = 116, поэтому площадь боковой поверхности 116*10 = 1160;
Ну зачем же так кричать :))) устная же задачка. Сечение это будет треугольником, причем равнобедренным, и основанием у него будет диагональ квадрата - который лежит в основании, со стороной 4.
Дальше задача решается в одно действие - дело в том, что проекция сечения на основание - это половина этого самого квадрата в основании, со стороной 4, то есть равнобедренный прямоугольный треугольник, образованый двумя сторонами основания и диаголналью. Площадь проекци сечения равна 4*4/2 = 8. А площадь саомго сечения равна 8/cos(45) = 8*корень(2)
Рассмотрим основание повнимательнее. Трапеция ABCD, AD = 42; BC = 22; AB = CD = 26; опустим препендикуляр на AD из точки В, это ВК. Треугольник АВК - прямоугольный с катетом АК = (42 - 22)/2 = 10 и гипотенузой АВ = 26, отсюда ВК = 24; (Пифагорова тройка 10,24,26)
таким образом, высота трапеции ABCD ВК = 24, а площадь (22 + 42)*24/2 = 768.
Кроме того, нам надо вычислить диагональ AC = BD. Рассмотрим прямоугольный треугольник BKD. ВК = 24; KD = 42 - 10 = 32; очевидно, что это треугольник, подобный "египетскому" (3,4,5), у которого все стороны умножены на 8, то есть (24, 32, 40), поэтому AC = BD = 40.
Под диагональным сечением я буду понимать прямоугольник АСС1А1. Поскольку АС = 40, то АА1 = 400/40 = 10 - высота призмы.
Периметр трапеции ABCD (42 + 22 +2*26) = 116, поэтому площадь боковой поверхности 116*10 = 1160;
Площадь полной поверхности 768*2 + 1160 = 2696;