Координаты точки А будем находить из прямоугольного треугольника, гипотенузой которого будет отрезок ОА=36, первым катетом - отрезок ОВ, лежащий на оси Ох, а вторым катетом - перпендикуляр АВ, опущенный из точки А на ось Ох.
Т.к. угол, который луч OA образует с положительной полуосью Ox
α = 30 °, то катет АВ, лежащий напротив этого угла равен половине гипотенузы ОА, т.е. АВ=ОА:2=36:2=18 (это у - координата точки А).
Найдём длину катета ОВ:
ОВ=√(OA²-AB²)=√(36²-18²)=√972 =18√3 (это х - координата точки А)
Высоты, по свойству высоты равнобедренного треугольника, являются биссектрисами и медианами, и каждая делит его на 2 равных прямоугольных треугольника.
Высота в таких треугольниках является большим катетом, который противолежит углу 60°, сторона равностороннего треугольника- гипотенузой, а меньший катет противолежит углу 30° и равен половине гипотенузы (свойство)
-----------------
Примем меньший катет (половину стороны) равным а. Тогда гипотенуза (сторона равностороннего треугольника) равна 2а.
По т.Пифагора с²=a²+b² (с- гипотенуза, а и b- катеты)⇒
(2а)²=а²+((13√3)²⇒
3а²=13²•3 ⇒ а=13,
Сторона данного равностороннего треугольника 2а=26 (ед. длины)
или
с=b:sin60°, где с - сторона равностороннего треугольника, b- его высота.
А(18√3; 18)
Пошаговое объяснение:
Координаты точки А будем находить из прямоугольного треугольника, гипотенузой которого будет отрезок ОА=36, первым катетом - отрезок ОВ, лежащий на оси Ох, а вторым катетом - перпендикуляр АВ, опущенный из точки А на ось Ох.
Т.к. угол, который луч OA образует с положительной полуосью Ox
α = 30 °, то катет АВ, лежащий напротив этого угла равен половине гипотенузы ОА, т.е. АВ=ОА:2=36:2=18 (это у - координата точки А).
Найдём длину катета ОВ:
ОВ=√(OA²-AB²)=√(36²-18²)=√972 =18√3 (это х - координата точки А)
Итак, запишем координаты точки А: А(18√3; 18)
Объяснение:
В равностороннем треугольнике все углы равны 60°.
Высоты, по свойству высоты равнобедренного треугольника, являются биссектрисами и медианами, и каждая делит его на 2 равных прямоугольных треугольника.
Высота в таких треугольниках является большим катетом, который противолежит углу 60°, сторона равностороннего треугольника- гипотенузой, а меньший катет противолежит углу 30° и равен половине гипотенузы (свойство)
-----------------
Примем меньший катет (половину стороны) равным а. Тогда гипотенуза (сторона равностороннего треугольника) равна 2а.
По т.Пифагора с²=a²+b² (с- гипотенуза, а и b- катеты)⇒
(2а)²=а²+((13√3)²⇒
3а²=13²•3 ⇒ а=13,
Сторона данного равностороннего треугольника 2а=26 (ед. длины)
или
с=b:sin60°, где с - сторона равностороннего треугольника, b- его высота.
с=(13√3):(√3/2)=26 (ед. длины)