Уравнение окружности радиуса R с центром в точке C (a; b) имеет вид:
(x – a)² + (y – b)² = R².
1. Радиус — расстояние от центра окружности до любойточки на окружности. Таким образом, радиус будет равен расстоянию от точки c (2; 1) до точки d (5; 5).
Расстояние между точками A (x₁; y₁) и B (x₂; y₂) вычисляется по формуле:
AB = √((x₁ - x₂)² + (y₁ - y₂)²).
Таким образом, расстояние между точками c (2; 1) и d (5; 5) будет равно:
Уравнение окружности радиуса R с центром в точке C (a; b) имеет вид:
(x – a)² + (y – b)² = R².
1. Радиус — расстояние от центра окружности до любойточки на окружности. Таким образом, радиус будет равен расстоянию от точки c (2; 1) до точки d (5; 5).
Расстояние между точками A (x₁; y₁) и B (x₂; y₂) вычисляется по формуле:
AB = √((x₁ - x₂)² + (y₁ - y₂)²).
Таким образом, расстояние между точками c (2; 1) и d (5; 5) будет равно:
cd = R = √((2 - 5)² + (1 - 5)²) = √((- 3)² + (- 4)²) = √(9 + 16) = √25 = 5.
1. Подставим известные значения в уравнение окружности радиуса R = 5 с центром в точке c (2; 1):
(x – 2)² + (y – 1)² = 5²;
(x – 2)² + (y – 1)² = 25.
ответ: (x – 2)² + (y – 1)² = 25.
37. Решение:
∠1=65° (как вертикальные)
∠1 и угол в 65° равны, как соответственные углы при пересечении двух прямых секущей. Отсюда прямые параллельны. Значит ∠2=78° (как соответственные)
Поскольку сумма смежных углов равна 180°, то
х=180°-∠2=180°-78°=102°
ответ: 102°
38. Решение (аналогично):
∠1=70° (как вертикальные)
∠1 и угол в 70° равны, как соответственные углы при пересечении двух прямых секущей. Отсюда прямые параллельны. Значит ∠2=50° (как соответственные)
х=∠2 (как вертикальные)
х=50°
ответ: 50°
(Чертёж в приложении)