Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
-----------
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Градусные меры, приведены на рисунке, решение: 1. В красный на рисунке обведены те градусы что не заданы в условии, тогда исходя из условия данных углов, найдем угол DBA:
Получаем, что DBA равен 65 градусов.
2. Треугольник ABD = треугольнику DBC: 1) ВD - общая сторона 2) угол ABD= углу DBC(доказано выше) 3) АВ=ВС (из условия) Получаем что треугольники равны, по двум сторонам и углу между ними.
3. У равных треугольников соответствующие элементы равны, получаем: 1)Угол BDA= углу BDC = 30 2) угол DAB = углу BCD = 85
4.Проверим правильно ли мы нашли, сумма углов выпуклого четырехугольника равна 360 градусов:
Что и требовалось доказать. ответ: 30, 65, 80 градусов
Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
-----------
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
1. В красный на рисунке обведены те градусы что не заданы в условии, тогда исходя из условия данных углов, найдем угол DBA:
Получаем, что DBA равен 65 градусов.
2. Треугольник ABD = треугольнику DBC:
1) ВD - общая сторона
2) угол ABD= углу DBC(доказано выше)
3) АВ=ВС (из условия)
Получаем что треугольники равны, по двум сторонам и углу между ними.
3. У равных треугольников соответствующие элементы равны, получаем:
1)Угол BDA= углу BDC = 30
2) угол DAB = углу BCD = 85
4.Проверим правильно ли мы нашли, сумма углов выпуклого четырехугольника равна 360 градусов:
Что и требовалось доказать.
ответ: 30, 65, 80 градусов