ответ:
№1
, где a - векторная величина; ускорение тела при его равноускоренном движении
v - векторная величина; скорость, которую тело имело к конце промежутка времени t
v0 - векторная величина; начальная скорость тела
№2.
вектор - отрезок, для которого указано, какая из его граничных точек считается началом, а какая - концом. по-простому, вектор - направленный отрезок.
любая точка плоскости также является вектором. в этом случае вектор называется нулевым.
№3.
длиной или модулем ненулевого вектора ab называется длина отрезка ab.
длина нулевого вектора считается равной нулю.
подробнее - на -
объяснение:
Основания - правильные треугольники. О₁ - центр верхнего основания (точка пересечения медиан (биссектрис, высот)), О - центр нижнего основания.
Пусть Н - середина В₁С₁, тогда О₁Н - радиус окружности, вписанной в треугольник А₁В₁С₁.
О₁Н = а√3/6 = 6√3/6 = √3 см
Пусть К - середина ВС, тогда ОК - радиус окружности, вписанной в треугольник АВС:
ОК = 12√3/6 = 2√3 см.
ОО₁ - высота пирамиды, тогда
ОО₁⊥ВС и АК⊥ВС, т.е. ребро ВС перпендикулярно двум пересекающимся прямым плоскости АКН, значит
ВС⊥(АКН)
Тогда ВС⊥КН, ∠НКА = 30° и НК - апофема пирамиды.
Sбок = (P₁ + P₂) · HK, где P₁ и P₂ - периметры оснований.
Осталось найти НК.
ОО₁НК - прямоугольная трапеция. Проведем в ней высоту НТ.
ОО₁НТ - прямоугольник, ОТ = О₁Н = √3 см
ТК = ОК - ОТ = 2√3 - √3 = √3 см
ΔНТК: cos 30° = TK / HK
HK = TK / cos 30° = √3 / (√3/2) = 2 см
Sбок = (P₁ + P₂) · HK = (6 ·3 + 12 · 3) · 2 = (18 + 36) · 2 = 54 · 2 = 108 см²
ответ:
№1
, где a - векторная величина; ускорение тела при его равноускоренном движении
v - векторная величина; скорость, которую тело имело к конце промежутка времени t
v0 - векторная величина; начальная скорость тела
№2.
вектор - отрезок, для которого указано, какая из его граничных точек считается началом, а какая - концом. по-простому, вектор - направленный отрезок.
любая точка плоскости также является вектором. в этом случае вектор называется нулевым.
№3.
длиной или модулем ненулевого вектора ab называется длина отрезка ab.
длина нулевого вектора считается равной нулю.
подробнее - на -
объяснение:
Основания - правильные треугольники. О₁ - центр верхнего основания (точка пересечения медиан (биссектрис, высот)), О - центр нижнего основания.
Пусть Н - середина В₁С₁, тогда О₁Н - радиус окружности, вписанной в треугольник А₁В₁С₁.
О₁Н = а√3/6 = 6√3/6 = √3 см
Пусть К - середина ВС, тогда ОК - радиус окружности, вписанной в треугольник АВС:
ОК = 12√3/6 = 2√3 см.
ОО₁ - высота пирамиды, тогда
ОО₁⊥ВС и АК⊥ВС, т.е. ребро ВС перпендикулярно двум пересекающимся прямым плоскости АКН, значит
ВС⊥(АКН)
Тогда ВС⊥КН, ∠НКА = 30° и НК - апофема пирамиды.
Sбок = (P₁ + P₂) · HK, где P₁ и P₂ - периметры оснований.
Осталось найти НК.
ОО₁НК - прямоугольная трапеция. Проведем в ней высоту НТ.
ОО₁НТ - прямоугольник, ОТ = О₁Н = √3 см
ТК = ОК - ОТ = 2√3 - √3 = √3 см
ΔНТК: cos 30° = TK / HK
HK = TK / cos 30° = √3 / (√3/2) = 2 см
Sбок = (P₁ + P₂) · HK = (6 ·3 + 12 · 3) · 2 = (18 + 36) · 2 = 54 · 2 = 108 см²