Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Параллелограммом в называется фигура с четырьмя углами, у которой параллельны противоположные стороны. таким образом, ромб, квадрат и прямоугольник являются разновидностями этого четырехугольника.2докажите, что две из противолежащих сторон равны и параллельны относительно друг друга. в параллелограмме abcd это признак выглядит так: ab=cd и ab||cd. нарисуйте диагональ ас. полученные треугольники окажутся равными по второму признаку. ас - общая сторона, углы вас и асd, также как и вса и cad, равны как лежащие накрест при параллельных прямых ab и cd (дано в условии). но так как эти накрест лежащие углы относятся и к сторонам ad и bc, значит эти отрезки также лежат на параллельных прямых, что и подвергалось доказательству.3важным элементами доказательства, что abcd параллелограмм, являются диагонали, так как в этой фигуре при пересечении в точке o они делятся на равные отрезки (ao=oc, bo=od). треугольники aob и cod равны, так как равны их стороны в связи с данными условиями и вертикальные углы. из этого следует, что и углы dba и cdb также как и cab и acd равны.4но эти же углы являются накрест лежащими при том, что прямые ab и cd параллельны, а роль диагонали выполняет секущая. доказав таким образом, что и два других образованных диагоналями треугольники равны, вы получите, что данный четырехугольник параллелограмм.5еще одно свойство, по которому можно доказать, что четырехугольник abcd - параллелограмм звучит так: противоположные углы этой фигуры равны, то есть угол b равен углу d, а угол c равен a. сумма углов треугольников, которые мы получим, если проведем диагональ ac, равна 180°. исходя из этого получаем, что сумма всех углов данной фигуры abcd равна 360°.6вспомнив условия , можно легко понять, что угол a и угол d в сумме составят 180°, аналогично угол c + угол d = 180°. в тоже время эти углы являются внутренними, лежат на одной стороне, при соответствующих им прямых и секущих. отсюда следует, что прямые bc и ad параллельны, и фигура является параллелограммом
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301