Из точки О построим перпендикуляры ОК, ОН, ОК к прямым АВ, ВС и АС.
Треугольники ОВК и ОВН прямоугольные и равны, так как гипотенуза ОВ у них общая, а угол ОВН = ОВК, так как ВО биссектриса, тогда ОК = ОН.
Аналогично треугольник ОСН = ОСМ, а тогда ОМ = ОН.
Следовательно ОК = ОН = ОК, а значит через точки К, Н, С можно провести окружность с центром в точке О.
Треугольники АКО и АМО прямоугольные, у которых ОК = ОМ как радиусы окружности, АО общая гипотенуза, тогда треугольники равна по катету и гипотенузе. Следовательно, угол КАО = МАО, а АО биссектриса угла ВКМ и ВАС, что и требовалось доказать.
ABCDA1B1C1D1 куб. В1М - одна сторона сечения (соедини в и М1), В1С - вторая сторона сечения. Грани AA1D1D и BB1C1C расположены в параллельных плоскостях, следовательно, стороны сечения, которые находятся в этих гранях, будут параллельны, т.е. так же будет проходить через середину канта и вершину. Значит MD - третья сторона сечения. Аналогично, ND - четвертая сторона. MB1ND - искомое сечение. Его стороны соединяют вершины грани с серединой кантов, а у куба все грани квадраты, значит все стороны сечения равны.
А1В1=а, тогда А1М=а/2. Сторона сечения МВ1=√(a^2+(a/2)^2)=√(a^2+a^2/4)=√(5a^2/4)=a√5/2
Из точки О построим перпендикуляры ОК, ОН, ОК к прямым АВ, ВС и АС.
Треугольники ОВК и ОВН прямоугольные и равны, так как гипотенуза ОВ у них общая, а угол ОВН = ОВК, так как ВО биссектриса, тогда ОК = ОН.
Аналогично треугольник ОСН = ОСМ, а тогда ОМ = ОН.
Следовательно ОК = ОН = ОК, а значит через точки К, Н, С можно провести окружность с центром в точке О.
Треугольники АКО и АМО прямоугольные, у которых ОК = ОМ как радиусы окружности, АО общая гипотенуза, тогда треугольники равна по катету и гипотенузе. Следовательно, угол КАО = МАО, а АО биссектриса угла ВКМ и ВАС, что и требовалось доказать.
ABCDA1B1C1D1 куб. В1М - одна сторона сечения (соедини в и М1), В1С - вторая сторона сечения. Грани AA1D1D и BB1C1C расположены в параллельных плоскостях, следовательно, стороны сечения, которые находятся в этих гранях, будут параллельны, т.е. так же будет проходить через середину канта и вершину. Значит MD - третья сторона сечения. Аналогично, ND - четвертая сторона. MB1ND - искомое сечение. Его стороны соединяют вершины грани с серединой кантов, а у куба все грани квадраты, значит все стороны сечения равны.
А1В1=а, тогда А1М=а/2. Сторона сечения МВ1=√(a^2+(a/2)^2)=√(a^2+a^2/4)=√(5a^2/4)=a√5/2
Периметр Р=a√5/2 * 4=2a√5