Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
Условие задачи составлено не корректно:
Объяснение:
Решение 1) ( Не используем параметр <ВСD=60°)
∆АСD- прямоугольный треугольник
По теореме Пифагора
СD=√(AC²-AD²)=√(18²-13²)=√(324-169)=
=√155см
P(ABCD)=2(AD+CD)=2(13+√155)=
=26+2√155см
ответ: 26+2√155см
Решение 2) (Не используем теорему Пифагора)
∆АСD- прямоугольный треугольник
<СDA=90°; <ACD=60°; <CAD=30°
СD- катет против угла 30°
СD=AC/2=18/2=9см.
Р=2(АD+DC)=2(13+9)=2*22=44см
Решение 3)
(Не используем параметр диагональ АС)
<САD=30°
tg<CAD=CD/AD
tg30°=1/√3
1/√3=CD/13
CD=13/√3=13√3/3 см
Р=2(13+13√3/3)=2(39/3+13√3/3)=(2(39+13√3))/3=(78+26√3)/3 см.
Решение 4)
(Параметр АD≠13;)
СD=AC/2=9 см катет против угла 30°
cos<CAD=AD/AC
cos30°=√3/2
√3/2=AD/18
AD=18√3/2=9√3см
Р=2(АD+CD)=2(9+9√3)=18+18√3см
ответ: 18+18√3
Zmeura1204
Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD