Поскольку АВ = ВМ, то треуг-к АВМ равнобедренный, угол АМВ = МАВ = 30, тогда угол В = 120. АВ = СД как противолежащие стороны параллелограмма, значит КД = СД. Углы В = Д = 120 как противолежащие углы парал-ма. Треуг-к СДК равнобедренный, углы СКД = КСД = 30. Тогда угол АКС = 180 - 30 = 150. Если у параллелограмма один из углов равен 120, то другой, прилегающий к этой стороне равен 180 - 120 = 60. Значит угол ВСД = 60, тогда ВСК = 60 - 30 = 30 Урог ВАК = ВСД = 60. Углы четырехугольника АВСК: А = 60 В = 120 С = 30 К = 150.
Параллелограмм АВСД, ВЛ и СЛ биссектрисы, СЛ=15, угол АЛВ=уголЛВС как внутренние разносторонние=уголАВЛ, треугольникАВЛ равнобедренный, АВ=АЛ, уголСЛД=уголЛСВ как внутренние разносторонние=уголЛСД, треугольникЛСД равнобедренный, СД=ЛД, но АВ=СД, значит АЛ=ЛД=АВ=СД, проводим высоты ВК на АЛ и СН на продолжение ЛД, ВК=СН = высота параллелограмма, площадь АВЛ=1/2*АЛ*ВК=15, площадь ЛСД=1/2*ЛД*СН, но АЛ=ЛД, а СН=ВК, значит площади треугольников равны =15, проводим высоту ДО в треугольнике ЛСД на СЛ, ДО=2*площадь/СЛ=2*15/12=2,5, треугольник ЛСД равнобедренный, ОД=высота, медиана, биссектриса, ЛО=ОС=12/2=6, ЛД=корень(ЛО в квадрате+ДО в квадрате)=корень(36+6,25)=6,5 =СД=АВ, АД=2*ЛД=2*6,5=13
АВ = СД как противолежащие стороны параллелограмма, значит КД = СД.
Углы В = Д = 120 как противолежащие углы парал-ма.
Треуг-к СДК равнобедренный, углы СКД = КСД = 30.
Тогда угол АКС = 180 - 30 = 150.
Если у параллелограмма один из углов равен 120, то другой, прилегающий к этой стороне равен 180 - 120 = 60.
Значит угол ВСД = 60, тогда ВСК = 60 - 30 = 30
Урог ВАК = ВСД = 60.
Углы четырехугольника АВСК:
А = 60
В = 120
С = 30
К = 150.