Знайдіть кут між бісектрисою і медіаною прямокутного трикутника, які проведені з вершини прямого кута, якщо один з гострих кутів цього трикутника дорівнює 80*
4. Периметр равнобедренной трапеции: P=a+b+c+d. Проведем две высоты к основанию AD (назовем трапецию ABCD) BH и СР. Угол BAH=60 градусам. Угол BHA=90 градусов. По теореме о сумме углов треугольника 180-(90+60)=30 градусов. Сторона AH лежит напротив угла в 30 градусов, следовательно, она равно половине гипотенузы AB. (Когда мы провели высоты, у нас отрезок HP стал равен малому основанию BC, а так как трапеция равнобедренная, то 26-13=13 см и еще разделим на 2, получим 6,5 см отрезки AH и PD). AP=13=CD по свойству равнобедренной трапеции. Наконец-то найдем периметр: 13+13+13+26= 65 см
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см