с — точка, касания плоскости α со сферой; плоскость с — касательная к сфере; β образует с α угол φ; β пересекается с шаром по окружности, диаметр которой св.
построим оо1 ⊥ св, соединим точку о с точками с и в. δоо1с = δоо1b (прямоугольные, оо1 — общий катет, ос = ов = r). тогда, со1 = о1b, точка о1 — центр окружности,
по которой плоскость β пересекает шар.
построим сечение шара плоскостью сов. φ — угол между плоскостями α и β.
∠ocb = 90o -φ, поскольку δboc — равнобедренный, то ∠obo1 = 90o -φ.
ответ:
с — точка, касания плоскости α со сферой; плоскость с — касательная к сфере; β образует с α угол φ; β пересекается с шаром по окружности, диаметр которой св.
построим оо1 ⊥ св, соединим точку о с точками с и в. δоо1с = δоо1b (прямоугольные, оо1 — общий катет, ос = ов = r). тогда, со1 = о1b, точка о1 — центр окружности,
по которой плоскость β пересекает шар.
построим сечение шара плоскостью сов. φ — угол между плоскостями α и β.
∠ocb = 90o -φ, поскольку δboc — равнобедренный, то ∠obo1 = 90o -φ.
из δоо1b:
площадь сечения шара
объяснение:
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.