А) проведем высоту к основанию, она будет являться медианой 1) делит основание на два равных отрезка 2)образует с основанием угол в 90* получится два равных прямоугольных треугольника. рассмотрим один из них- нам известна гипотенуза и катет. Х-высота ( в р/б) и катет(в прямоугольном треугольнике) Гипотенуза=13 Один из катетов равен половине основания 10/2=5
по т пифагора найдем неизвестный катет( Х, высоту р/б) 13^2=5^2+x^2 x^2=169-25 x^2=144 x=корень из 144 х=12 дм б) s(р/б)=а*h/2 (а - основание) s(р/б)=12*10/2 s(р/б)=12*5 s(р/б)=60 дм^2
Призмой называется многогранник, две грани которого n-угольники, а остальные n граней — параллелограммы.Боковые ребра призмы равны и параллельны.
Перпендикуляр, проведенный из какой-либо точки одного основания к плоскости другого основания, называется высотой призмы. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.Поверхность призмы состоит из оснований и боковой поверхности призмы. Боковая поверхность призмы состоит из параллелограммов.
Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой. В противном случае призма называется наклонной.
У прямой призмы боковые грани – прямоугольники.
Высота прямой призмы равна ее боковому ребру.
Прямая призма называется правильной, если она прямая, и ее основания — правильные многоугольники
Площадь поверхности и объём призмы
Пусть H — высота призмы, — боковое ребро призмы, — периметр основания призмы, площадь основания призмы, — площадь боковой поверхности призмы, — площадь полной поверхности призмы, - объем призмы, — периметр перпендикулярного сечения призмы, — площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Для прямой призмы, у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:
Параллелепипед
Параллелепипедом называется призма, основанием которой является параллелограмм.
Параллелограммы, из которых составлен параллелепипед, называются его гранями, их
проведем высоту к основанию, она будет являться медианой
1) делит основание на два равных отрезка
2)образует с основанием угол в 90*
получится два равных прямоугольных треугольника.
рассмотрим один из них- нам известна гипотенуза и катет.
Х-высота ( в р/б) и катет(в прямоугольном треугольнике)
Гипотенуза=13
Один из катетов равен половине основания
10/2=5
по т пифагора найдем неизвестный катет( Х, высоту р/б)
13^2=5^2+x^2
x^2=169-25
x^2=144
x=корень из 144
х=12 дм
б)
s(р/б)=а*h/2 (а - основание)
s(р/б)=12*10/2
s(р/б)=12*5
s(р/б)=60 дм^2
Призма
Призмой называется многогранник, две грани которого n-угольники, а остальные n граней — параллелограммы.Боковые ребра призмы равны и параллельны.
Перпендикуляр, проведенный из какой-либо точки одного основания к плоскости другого основания, называется высотой призмы. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.Поверхность призмы состоит из оснований и боковой поверхности призмы. Боковая поверхность призмы состоит из параллелограммов.
Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой. В противном случае призма называется наклонной.
У прямой призмы боковые грани – прямоугольники.
Высота прямой призмы равна ее боковому ребру.
Прямая призма называется правильной, если она прямая, и ее основания — правильные многоугольники
Площадь поверхности и объём призмы
Пусть H — высота призмы, — боковое ребро призмы, — периметр основания призмы, площадь основания призмы, — площадь боковой поверхности призмы, — площадь полной поверхности призмы, - объем призмы, — периметр перпендикулярного сечения призмы, — площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Для прямой призмы, у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:
Параллелепипед
Параллелепипедом называется призма, основанием которой является параллелограмм.
Параллелограммы, из которых составлен параллелепипед, называются его гранями, их