Відстань від точки A до другої площини — це довжина перпендикуляра AA', опущеного з точки A на іншу площину. Відстань від т. A до лінії перетину площин — це величина перпендикуляра AH, опущеного з т. A на пряму перетину.
З'єднавши точки A' та H, отримаємо прямокутний трикутник AA'H (тому що AA' перпендикулярний до будь-якої прямої іншої площини). За теоремою про 3 перпендикуляри A'H буде перпендикулярний і прямій перетину, а, отже, є проекцією AH на другу площину, і в такому випадку кут AHA' і буде кутом між двома площинами.
З прямокутного ΔAHA' знайдемо АН:
Відповідь: Відстань від точки А до лінії перетину площин рівна 8 см.
* * * Даны два прямоугольных треугольника ABC и ADC (не ABD ), AC биссектриса. Найти угол BAD,если (BC=CD_лишнее) угол ACB=55. * *
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Даны два прямоугольных треугольника ABC и ADC
( ∠ABC= ∠ ADC =90°) и BC = CD . Рисунок первый.
1. Доказать ΔABC = ΔADC
2. Найти ∠ BAD , если ∠ ACB=55°.
1 . AC - общая гипотенуза
BC = C D
следовательно: ΔABC = ΔADC
2.
∠DAC = ∠ BAС ( следствие пункт 1. ΔABC = ΔADC )
∠ BAD =∠ BAС+∠DAC = 2∠ BAC=2( 90° - ∠ ACB) = 2(90° - 55°) =
=2*35° = 70° .
? * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Даны два прямоугольных треугольника ABC и ADC , AC биссектриса. Найти угол BAD,если угол ACB=55°.
- - - - BC = CD _лишнее
AC _биссектриса угла BAD ⇒ ∠ BAD =2∠ BAC
∠ BAC = 90° - ∠ ACB = 90° - 55° = 35°
∠ BAD = 2∠ BAC =2*35° =70°
Відстань від точки A до другої площини — це довжина перпендикуляра AA', опущеного з точки A на іншу площину. Відстань від т. A до лінії перетину площин — це величина перпендикуляра AH, опущеного з т. A на пряму перетину.
З'єднавши точки A' та H, отримаємо прямокутний трикутник AA'H (тому що AA' перпендикулярний до будь-якої прямої іншої площини). За теоремою про 3 перпендикуляри A'H буде перпендикулярний і прямій перетину, а, отже, є проекцією AH на другу площину, і в такому випадку кут AHA' і буде кутом між двома площинами.
З прямокутного ΔAHA' знайдемо АН:
Відповідь: Відстань від точки А до лінії перетину площин рівна 8 см.