1) Пусть основание треугольника = 5х, тогда боковая сторона равна 4х.
Так как треугольник равнобедренных, то его периметр равен:
5х + 4х + 4х = 26 см,
13 х = 26
откуда х = 26 : 13 = 2,
х = 2 см
2) Следовательно:
- основание треугольника равно:
5х * 2 = 10 см;
- боковая сторона равна:
4х * 2 = 8 см.
3) Прямая проходит параллельно основанию через середину боковой стороны треугольника. Значит верхнее основание трапеции является средней линией треугольника. А так как средняя линия треугольника равна половине той стороны треугольника, которой она параллельна, то эта средняя линия (она же - верхнее основание трапеции) составляет:
10 : 2 = 5 см.
4) Согласно условию, боковая сторона трапеции равна половине боковой стороны треугольника, что составляет:
8 : 2 = 4 см.
Таких сторон в трапеции - две. Это это следует из того, что треугольник равнобедренный, соответственно и трапеция, построенная на его сторонах, также является равнобедренной.
5) Все стороны трапеции рассчитали - находим её периметр:
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.
23 см
Объяснение:
1) Пусть основание треугольника = 5х, тогда боковая сторона равна 4х.
Так как треугольник равнобедренных, то его периметр равен:
5х + 4х + 4х = 26 см,
13 х = 26
откуда х = 26 : 13 = 2,
х = 2 см
2) Следовательно:
- основание треугольника равно:
5х * 2 = 10 см;
- боковая сторона равна:
4х * 2 = 8 см.
3) Прямая проходит параллельно основанию через середину боковой стороны треугольника. Значит верхнее основание трапеции является средней линией треугольника. А так как средняя линия треугольника равна половине той стороны треугольника, которой она параллельна, то эта средняя линия (она же - верхнее основание трапеции) составляет:
10 : 2 = 5 см.
4) Согласно условию, боковая сторона трапеции равна половине боковой стороны треугольника, что составляет:
8 : 2 = 4 см.
Таких сторон в трапеции - две. Это это следует из того, что треугольник равнобедренный, соответственно и трапеция, построенная на его сторонах, также является равнобедренной.
5) Все стороны трапеции рассчитали - находим её периметр:
10 + 5 + 4 + 4 = 23 см
ответ: 23 см
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.