Объяснение: Сделаем рисунок. Обозначим точку пересечения АК и LD буквой Е и рассмотрим ∆ АЕД и ∆ LMD. Они прямоугольные ( DL перпендикулярна АК по условию) и имеют общий угол при вершине D. Он равен градусной мере развернутого угла без ∠DEA и без ∠ЕАD. Угол ЕDA= 90°-24°=66°. ⇒ ∠ МLD=∠КАD=24°
LM⊥AD (дано) ⇒ LМ║CD. ⇒ LМ=CD. Т.к. АВСD – квадрат, то LM=AD.
∆ АКD=∆ LDМ по катету ( LM=AD) и острому углу при вершине D. Поэтому KD=MD. Катеты прямоугольного треугольника АDМ равны. следовательно, его острые углы равны 45°. ⇒∠OMD=45°
ответ: Угол DOM=69°
Объяснение: Сделаем рисунок. Обозначим точку пересечения АК и LD буквой Е и рассмотрим ∆ АЕД и ∆ LMD. Они прямоугольные ( DL перпендикулярна АК по условию) и имеют общий угол при вершине D. Он равен градусной мере развернутого угла без ∠DEA и без ∠ЕАD. Угол ЕDA= 90°-24°=66°. ⇒ ∠ МLD=∠КАD=24°
LM⊥AD (дано) ⇒ LМ║CD. ⇒ LМ=CD. Т.к. АВСD – квадрат, то LM=AD.
∆ АКD=∆ LDМ по катету ( LM=AD) и острому углу при вершине D. Поэтому KD=MD. Катеты прямоугольного треугольника АDМ равны. следовательно, его острые углы равны 45°. ⇒∠OMD=45°
Из суммы углов треугольника
Угол DOM=180°-∠ОМD-∠МDО=180°-45°-66°=69°
1) а) Найдем углы в треугольнике АСО. Угол АОС равен (180-128)/2.
Т.к. односторонние сумма углов равна 180 градусам. А биссектриса делит угол пополам.
Угол САО равен 128. Т.к. его вертикальный угол равен 128, а вертикальные углы равны. А сумма односторонних углов равна 180. Следовательно угол А=128.
Посчитаем угол АСО. Сумма углов треугольника равна 180 градусом. 180-128-26=26.
Углы при основании равны. Значит треугольник АСО равнобедренные, а его боковые стороны АС и АО равны. Чтд.
б) 26
2)
Объяснение: