№1
Если прямая перпендикулярна плоскости, то эта прямая будет перпендикулярна любой прямой прямой, лежащей на этой плоскости.
Так как ВН перпендикулярна плоскости (АВС), АС – отрезок, лежащий на плоскости (АВС), то ВН перпендикулярна АС.
Доказано.
№2
а) Рассмотрим ∆DCK, ∆DCL, ∆DCM и ∆DCN.
Прямая, перпендикулярная плоскости, перпендикулярна любой прямой, лежащей на этой плоскости.
Следовательно DC перпендикулярна МК и NL, то есть угол DCK=угол DCL=угол DCM=угол DCN=90°.
Значит рассматриваемые треугольники прямоугольные.
KLMN – квадрат по условию.
Диагонали квадрата равны и точкой пересечения деляться пополам. Следовательно любая половина диагонали квадрата равна трём другим.
То есть CK=CL=CM=CN.
DC – общая сторона.
Тогда ∆DCK=∆DCL=∆DCM=∆DCN как прямоугольные треугольники по двум катетам.
Исходя из этого DK=DL=DM=DN как соответствующие стороны равных треугольников.
б) Диагонали квадрата перпендикулярны друг другу.
Следовательно угол КСL=90°, тогда ∆КСL – прямоугольный.
СК=СL (доказано ранее). Пусть СК=х, тогда CL=x так же.
По теореме Пифагора в прямоугольном ∆KCL:
KL²=CL²+CL²
12²=x²+x²
2x²=144
x²=72
Совокупность:
x=√72
х=–√72
Так как длина задана положительным числом, то
х=√72
То есть CL=√72.
∆DCL – прямоугольный с прямым углом DCL (доказано ранее).
По теореме Пифагора в прямоугольном ∆DCL:
DL²=CL²+DC²
DL²=(√72)²+3²
DL²=72+9
DL=√81
DL=–81
DL=9
DL=–9
DL=9.
DN=DL (доказано ранее), следовательно DN=9.
ответ: 9
1) в равностороннем треугольнике все высоты равны.
Верно.Это свойство высот равностороннего треугольника
2)точка пересечения медиан произвольного треугольника - это центр окружности, описанной около этого треугольника.
Неверно. Центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника
4)медиана, это отрезок соеденяющий середины двух сторон треугольника.
Неверно. Медиана - отрезок, соединяющий вершину треугольника с серединой противоположной стороны
5) треугольник со сторонами 6,8,9- не существует.
Неверно. Существует.
Треугольник существует только тогда, когда сумма любых двух его сторон больше третьей.
Проверим:
6+8>9, 14>9
8+9>6, 17>6
6+9>8, 15>8
6) треугольник со сторонами 3,4,5 -прямоугольный.
Верно. Он египетский.
Египетский треугольник - прямоугольный треугольник с соотношением сторон 3:4:5
ответ 1 и 6
№1
Если прямая перпендикулярна плоскости, то эта прямая будет перпендикулярна любой прямой прямой, лежащей на этой плоскости.
Так как ВН перпендикулярна плоскости (АВС), АС – отрезок, лежащий на плоскости (АВС), то ВН перпендикулярна АС.
Доказано.
№2
а) Рассмотрим ∆DCK, ∆DCL, ∆DCM и ∆DCN.
Прямая, перпендикулярная плоскости, перпендикулярна любой прямой, лежащей на этой плоскости.
Следовательно DC перпендикулярна МК и NL, то есть угол DCK=угол DCL=угол DCM=угол DCN=90°.
Значит рассматриваемые треугольники прямоугольные.
KLMN – квадрат по условию.
Диагонали квадрата равны и точкой пересечения деляться пополам. Следовательно любая половина диагонали квадрата равна трём другим.
То есть CK=CL=CM=CN.
DC – общая сторона.
Тогда ∆DCK=∆DCL=∆DCM=∆DCN как прямоугольные треугольники по двум катетам.
Исходя из этого DK=DL=DM=DN как соответствующие стороны равных треугольников.
Доказано.
б) Диагонали квадрата перпендикулярны друг другу.
Следовательно угол КСL=90°, тогда ∆КСL – прямоугольный.
СК=СL (доказано ранее). Пусть СК=х, тогда CL=x так же.
По теореме Пифагора в прямоугольном ∆KCL:
KL²=CL²+CL²
12²=x²+x²
2x²=144
x²=72
Совокупность:
x=√72
х=–√72
Так как длина задана положительным числом, то
х=√72
То есть CL=√72.
∆DCL – прямоугольный с прямым углом DCL (доказано ранее).
По теореме Пифагора в прямоугольном ∆DCL:
DL²=CL²+DC²
DL²=(√72)²+3²
DL²=72+9
Совокупность:
DL=√81
DL=–81
Совокупность:
DL=9
DL=–9
Так как длина задана положительным числом, то
DL=9.
DN=DL (доказано ранее), следовательно DN=9.
ответ: 9
1) в равностороннем треугольнике все высоты равны.
Верно.Это свойство высот равностороннего треугольника
2)точка пересечения медиан произвольного треугольника - это центр окружности, описанной около этого треугольника.
Неверно. Центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника
4)медиана, это отрезок соеденяющий середины двух сторон треугольника.
Неверно. Медиана - отрезок, соединяющий вершину треугольника с серединой противоположной стороны
5) треугольник со сторонами 6,8,9- не существует.
Неверно. Существует.
Треугольник существует только тогда, когда сумма любых двух его сторон больше третьей.
Проверим:
6+8>9, 14>9
8+9>6, 17>6
6+9>8, 15>8
6) треугольник со сторонами 3,4,5 -прямоугольный.
Верно. Он египетский.
Египетский треугольник - прямоугольный треугольник с соотношением сторон 3:4:5
ответ 1 и 6