1) Дано: ABCD - трапеция,∠А=90°, ∠С-∠В=48°. Найти: ∠D, ∠С, ∠В Решение: 1.Рассмотрим трапецию АВСD. ВА∫∫CD(по опр. трапеции) ⇒ сумма односторонних углов равна 180°(по св-ву парал. прям. и сек.). Пусть секущей будет DA, тогда ∠А+∠D=180° ⇒ ∠D=180°-90°=90°. Возьмем СВ как секущую, тогда ∠С+∠В=180°(по св-ву). 2. Получим систему: ∠С+∠В=180° ∠С-∠В=48° Такое возможно, только если один из углов равен 114, а второй 66. (Найти можно методом подбора). Тогда ∠С=114°(т.к.он тупой), а ∠В=66°(т.к.он острый). ответ: 90°, 114°, 66° 2) Дано: ABCD - прямоугл., ∠АВО=36° Найти: ∠АОD Решение:1.Рассмотрим BD и АС. Они пересекаются в точке О, при этом делятся пополам(по св-ву параллелогр.). Также диагонали равны(по св-ву прямоуг.)⇒ВO=ОА. 2.Рассмотрим ΔВОА: ВО=ОА ⇒ ΔВОА - равнобедр.(по опр.) ⇒ ∠ОВА=∠ВАО=36°(по св-ву равноб. Δ). По теореме о сумме углов треугольника найдем ∠ВОА: 180-36-36=108°. 3. ∠ВОА смежен с ∠АОD. То есть их сумма равна 180(по св-ву) ⇒ ∠AOD=180-108=72° ответ: 72°
BK биссектриса, тогда ABK=KBC или ABD+DBK=CBM+KBM откуда ABD=CBM=y и DBK=x по теореме Штейнера получается
AD*AM/(CM*CD) = (AB/BC)^2 но так как AM=CM (медиана) AD/CD = (AB/BC)^2 (1) с одной стороны AD=AB*siny и CD=BC*sin(2x+y) из прямоугольных треугольников ABD и CBD соответственно.
с другой AB/BC = cos(2x+y)/cosy из треугольника ABC Подставляя в (1) откуда siny/sin(2x+y) = cos(2x+y)/cosy откуда sin2x*cos(2x+2y)=0, x<180
откуда x=45-y
Значит ABC=2x+2y = 2*(x+45-x) = 90 гр
второй
Опишем около треугольника ABC окружность, пусть X,H,Y точки пересечения BM,BK,BD с описанной окружностью.
Тогда из условия следует AX=CY и AH=CH (опираются на равные углы) так же получаем что H середина дуги XY так как BK биссектриса, HM высота и биссектриса равнобедренного треугольника AHC и XY || AC (так как AXYC) равнобедренная трапеция , значит BYX=BDA=90 гр, если F точка пересечения XY и MH тогда из подобия треугольников XHM и XYB учитывая что XH=HY откуда XM/BX=1/2 то есть BM=MX а так как MX=MY (треугольники AMX и CMY равны) получаем BM=MX=MY треугольник BMY равнобедренный , откуда BD=YD откуда M центра описанной окружности, значит AC диаметр откуда ABC=90 гр.
Найти: ∠D, ∠С, ∠В
Решение: 1.Рассмотрим трапецию АВСD. ВА∫∫CD(по опр. трапеции) ⇒ сумма односторонних углов равна 180°(по св-ву парал. прям. и сек.). Пусть секущей будет DA, тогда ∠А+∠D=180° ⇒ ∠D=180°-90°=90°. Возьмем СВ как секущую, тогда ∠С+∠В=180°(по св-ву).
2. Получим систему:
∠С+∠В=180°
∠С-∠В=48°
Такое возможно, только если один из углов равен 114, а второй 66. (Найти можно методом подбора). Тогда ∠С=114°(т.к.он тупой), а ∠В=66°(т.к.он острый).
ответ: 90°, 114°, 66°
2) Дано: ABCD - прямоугл., ∠АВО=36°
Найти: ∠АОD
Решение:1.Рассмотрим BD и АС. Они пересекаются в точке О, при этом делятся пополам(по св-ву параллелогр.). Также диагонали равны(по св-ву прямоуг.)⇒ВO=ОА.
2.Рассмотрим ΔВОА: ВО=ОА ⇒ ΔВОА - равнобедр.(по опр.) ⇒ ∠ОВА=∠ВАО=36°(по св-ву равноб. Δ). По теореме о сумме углов треугольника найдем ∠ВОА: 180-36-36=108°.
3. ∠ВОА смежен с ∠АОD. То есть их сумма равна 180(по св-ву) ⇒ ∠AOD=180-108=72°
ответ: 72°
1)
BK биссектриса, тогда ABK=KBC или ABD+DBK=CBM+KBM откуда ABD=CBM=y и DBK=x по теореме Штейнера получается
AD*AM/(CM*CD) = (AB/BC)^2 но так как AM=CM (медиана) AD/CD = (AB/BC)^2 (1) с одной стороны AD=AB*siny и CD=BC*sin(2x+y) из прямоугольных треугольников ABD и CBD соответственно.
с другой AB/BC = cos(2x+y)/cosy из треугольника ABC Подставляя в (1) откуда siny/sin(2x+y) = cos(2x+y)/cosy откуда sin2x*cos(2x+2y)=0, x<180
откуда x=45-y
Значит ABC=2x+2y = 2*(x+45-x) = 90 гр
второй
Опишем около треугольника ABC окружность, пусть X,H,Y точки пересечения BM,BK,BD с описанной окружностью.
Тогда из условия следует AX=CY и AH=CH (опираются на равные углы) так же получаем что H середина дуги XY так как BK биссектриса, HM высота и биссектриса равнобедренного треугольника AHC и XY || AC (так как AXYC) равнобедренная трапеция , значит BYX=BDA=90 гр, если F точка пересечения XY и MH тогда из подобия треугольников XHM и XYB учитывая что XH=HY откуда XM/BX=1/2 то есть BM=MX а так как MX=MY (треугольники AMX и CMY равны) получаем BM=MX=MY треугольник BMY равнобедренный , откуда BD=YD откуда M центра описанной окружности, значит AC диаметр откуда ABC=90 гр.