Знайдіть обєм конуса якщо радіус його основи дорівнює 30 см а діаметр основи становить 36знайдіиь об'єм конуса, у якого твірна дорівнює 30 см, а діаметр основи становить 36 см
Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
Начертите чертёж и посмотрите внимательно. Рассмотрим одну из вершин трапеции и отрезки сторон, соединяющие эту вершину с точками, в которых окружность касается сторон. Эти отрезки равны между собой как отрезки касательных, проведённых к окружности из одной точки. Такое рассуждение можно провести для всех 4-х вершин. Таким образом, наша трапеция "собрана" из отрезков 4-х видов (длин) , каждый повторяется по 2 раза. Назовём эти длины А, В, С и D. Периметр трапеции - это 2(А+В+С+D)=12. Далее, средняя линия трапеции равна полусумме её оснований. Основания также складываются из наших 4-х отрезков. Сумма оснований будет (А+В+С+D)=12/2=6. Полусумма - (А+В+С+D)/2=6/2=3.
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).
Рассмотрим одну из вершин трапеции и отрезки сторон, соединяющие эту вершину с точками, в которых окружность касается сторон.
Эти отрезки равны между собой как отрезки касательных, проведённых к окружности из одной точки.
Такое рассуждение можно провести для всех 4-х вершин.
Таким образом, наша трапеция "собрана" из отрезков 4-х видов (длин) , каждый повторяется по 2 раза. Назовём эти длины А, В, С и D.
Периметр трапеции - это 2(А+В+С+D)=12.
Далее, средняя линия трапеции равна полусумме её оснований. Основания также складываются из наших 4-х отрезков. Сумма оснований будет (А+В+С+D)=12/2=6.
Полусумма - (А+В+С+D)/2=6/2=3.