Известно что расстояние от точки до прямой является перпендикуляр.
А сколь велика разница в пути если двигаться не по перпендикуляру, а по близкой к нему наклонной? Проделайте следующий опыт. Пусть AB - перпендикуляр к прямой, причём B - основание перпендикуляра; C - некоторая другая точка прямой. Попробуйте сначала оценить на глаз с точностью до 0,1 сантиметра длину AC, а затем, выполнив построение, измерьте это расстояние с такой же точностью, если: a)AB=5cm; BC=1cm. б) AB=10cm; BC=1cm.
Объяснение:
Построение случаев а) и б) в прикрепленных файлах.
Оценка на "глаз" с точностью до 0,1 показала:
а) АС≈5,5 см ;б) АС≈10,5 см.
Измерение этих расстояний с линейки показало:
а) АС≈5,3 см ;б) АС≈10,2 см. Измерения с линейки не дает точный результат длины отрезка, поэтому оставлен знак " приблизительно равно".
=========================
Даже применение разных линеек для измерения длин влияет на результат.
==========================
Применение теоремы Пифагора , не изученную Вами , дало следующие результаты длин :
Известно что расстояние от точки до прямой является перпендикуляр.
А сколь велика разница в пути если двигаться не по перпендикуляру, а по близкой к нему наклонной? Проделайте следующий опыт. Пусть AB - перпендикуляр к прямой, причём B - основание перпендикуляра; C - некоторая другая точка прямой. Попробуйте сначала оценить на глаз с точностью до 0,1 сантиметра длину AC, а затем, выполнив построение, измерьте это расстояние с такой же точностью, если: a)AB=5cm; BC=1cm. б) AB=10cm; BC=1cm.
Объяснение:
Построение случаев а) и б) в прикрепленных файлах.
Оценка на "глаз" с точностью до 0,1 показала:а) АС≈5,5 см ;б) АС≈10,5 см.
Измерение этих расстояний с линейки показало:а) АС≈5,3 см ;б) АС≈10,2 см. Измерения с линейки не дает точный результат длины отрезка, поэтому оставлен знак " приблизительно равно".
=========================
Даже применение разных линеек для измерения длин влияет на результат.
==========================
Применение теоремы Пифагора , не изученную Вами , дало следующие результаты длин :
а)АС=√(1²+5²)=√26≈5,0,
б)АС=√(1²+10²)=√101≈10,0.
orjabinina ,
1). См. рис.1
По условию, т.О - середина отрезков АВ и СD.
Кроме того, AB⊥CD.
Четырехугольник, в котором диагонали пересекаются под прямым углом и делятся точкой пересечения пополам, является ромбом.
Следовательно, AD = DB = BC = CA = 17 (см)
В ΔАОD и ΔСОB:
АО = ОВ; СО = ОD; ∠АОD = ∠COB = 90°
Следовательно, прямоугольные треугольники ΔАОD и ΔСОB равны по двум катетам.
---------------------------------
2). См. рис.2
В ΔADM и ΔАКМ:
∠ADM = ∠AKM = 90°
∠DAM = ∠KAM = 70° (АМ - биссектриса ∠ВАС)
Тогда:
∠DMA = ∠KMA = 180 - (90 + 70) = 20°
Следовательно, прямоугольные треугольники ΔADM и ΔАКМ равны по общей гипотенузе и острому углу.
--------------------------------
3). В ΔАВЕ и ΔDCE:
∠ABE = ∠DCE = 90°
∠BEA = ∠CED, как вертикальные
Тогда:
∠ВАЕ = ∠СDE = 20°
и ∠BEA = ∠CED = 180 - (90 + 20) = 70°
Так как ∠ВАЕ = ∠СDE = 20° и АВ = СD, то:
ΔABE = ΔDCE по катету и прилежащему острому углу.
Величина угла ∠АЕD:
∠АЕD = 180 - 70 = 110°
В ΔАЕD:
AE = ED, как гипотенузы в равных треугольниках.
Следовательно, ΔАЕD - равнобедренный и:
∠EAD = ∠EDA = (180 - 110) : 2 = 35°
В ΔABD и ΔACD:
∠BAD = ∠CDA = 20 + 35 = 55°
и АВ = CD
Тогда:
ΔABD = ΔACD по катету и прилежащему острому углу.