Очень смешная задачка, меня порадовала. Пусть точка пересечения упомянутых в условии отрезков - это точка M. Предположим, что я построил плоскость ACM. Тогда центр окружности, вписанной в треугольник BCD, лежит в этой плоскости (потому что этот центр лежит на прямой AM), и следовательно, в этой плоскости лежит биссектриса угла BCD. Точно также, в этой плоскости ACM лежит центр окружности, вписанной в треугольник ABD (как "конец" отрезка CM), и, следовательно, в плоскости ACM лежит биссектриса угла DAB. Ну, значит, эти биссектрисы имеют общую точку (конец) на отрезке BD. Что означает, в частности, что AD/AB = CD/CB; AD = AB*CD/CB = 8*7/5 = 11,2
Я кучу времени потратил, пытаясь выяснить, не являются ли стороны тетраэдра касательными к одной сфере, но это оказалось ложным следом (и неверно!)
какое из следующих утверждений неверно?
а) Если высота треугольника делит сторону, к которой она проведена ,на равные отрезки ,то этот треугольник-равнобедренный. ВЕРНО
б) Если медиана и биссектриса,проведенные из одной вершины,не совпадают,то этот треугольник не является равнобедренным. НЕВЕРНО
Медиана и биссектриса, проведенные к боковой стороне равнобедренного треугольника, не совпадают. Совпадают только проведенные к основанию.
в) Если треугольник равносторонний ,то длина любой его высоты равна длине любой его биссектрисы. ВЕРНО
г) Если два угла треугольника равны ,то биссектриса третьего угла делит противолежащую сторону треугольника на равные отрезки. ВЕРНО
ответ : неверное утверждение б)
Пусть точка пересечения упомянутых в условии отрезков - это точка M.
Предположим, что я построил плоскость ACM.
Тогда центр окружности, вписанной в треугольник BCD, лежит в этой плоскости (потому что этот центр лежит на прямой AM), и следовательно, в этой плоскости лежит биссектриса угла BCD.
Точно также, в этой плоскости ACM лежит центр окружности, вписанной в треугольник ABD (как "конец" отрезка CM), и, следовательно, в плоскости ACM лежит биссектриса угла DAB.
Ну, значит, эти биссектрисы имеют общую точку (конец) на отрезке BD.
Что означает, в частности, что AD/AB = CD/CB;
AD = AB*CD/CB = 8*7/5 = 11,2
Я кучу времени потратил, пытаясь выяснить, не являются ли стороны тетраэдра касательными к одной сфере, но это оказалось ложным следом (и неверно!)