Если рассмотреть сечение, то получится прямоугольник со сторонами 2х и h , вписан в равнобедренный треугольник Составлю площадь поверхности цилиндра с радиусом х и высотой h (выраженной через х) как функцию от х и через производную найду ее максимум. найденное х подставлю в обем цилиндра... 1) выражу h через х из ΔАВН tgA=h/(6-x); h=(6-x)*tgA=(6-x)*(15/6)=5(6-x)/2=15-2.5x S(пов)=2pix^2+2pix*h=2pi*x^2+2pix(15-2.5x)= =2pix^2+30pix-5pix^2=30pix-3pix^2 приравниваю производную по х к 0 30pi=6pix x=5 h=5/2=2.5 V=pix^2*h=pi*5^2*2.5=62.5pi
1. Понятно, что треугольники A1B1C1 и ABC подобны (стороны параллельны -> углы равны); и даже действительно с гомотетии можно получить из одного другое
2. O- точка пересечения медиан в треугольнике A1B1C1.
3. Медианы делятся точкой пересечения в отношении 2:1, считая от вершины.
Выразим длину медианы o в маленьком треугольнике через медиану большого треугольника O (на примере АА1):
A1O = O/3 = 2o/3,
откуда m = 1/2 O.
Принимая во внимание, что коэф. гомотетии в данном случае отрицательный, ответ
Составлю площадь поверхности цилиндра с радиусом х и высотой h (выраженной через х) как функцию от х и через производную найду ее максимум. найденное х подставлю в обем цилиндра...
1) выражу h через х из ΔАВН
tgA=h/(6-x); h=(6-x)*tgA=(6-x)*(15/6)=5(6-x)/2=15-2.5x
S(пов)=2pix^2+2pix*h=2pi*x^2+2pix(15-2.5x)=
=2pix^2+30pix-5pix^2=30pix-3pix^2
приравниваю производную по х к 0
30pi=6pix
x=5 h=5/2=2.5
V=pix^2*h=pi*5^2*2.5=62.5pi
1. Понятно, что треугольники A1B1C1 и ABC подобны (стороны параллельны -> углы равны); и даже действительно с гомотетии можно получить из одного другое
2. O- точка пересечения медиан в треугольнике A1B1C1.
3. Медианы делятся точкой пересечения в отношении 2:1, считая от вершины.
Выразим длину медианы o в маленьком треугольнике через медиану большого треугольника O (на примере АА1):
A1O = O/3 = 2o/3,
откуда m = 1/2 O.
Принимая во внимание, что коэф. гомотетии в данном случае отрицательный, ответ
-1/2