Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Объяснение:
1) треуг BCA= треуг ECD
(по двум равным сторонам и вертикальном углу между ними)
2) треуг BAC = треуг BCD (по двум равным сторонам и одной общей)
3) треуг MNP = треуг PRQ (по равной стороне и двум равным углам ((уг MPN = уг RPQ как вертикальные)))
4) DEC=CDK (по равному углу, стороне и общей стороне)
5) QOR=ROP (по равному углу, стороне и общей стороне)
6) ABC=BDE (по равной стороне и двум равным углам ((уг ABC = УГ EBD как вертикальные)))
7) LMN=LNK (по двум равным сторонам и одной общей)
8) ECF=CED (по равному углу, стороне и общей стороне)
Точка B(3,-2,2)
а) параллельна плоскости Oyz.
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Подробнее - на -