b1e= 6√2 там ведь квадрат и по т.пифагора
a1e= сложнее
угол равен 120, равнобедренный треугольник стороны 6
180 - 120 = 60, уже легче, ибо 60\2 = 30, это стороны при основании
сейчас я рассматриваю просто а1е1
получается что треугольник равнобедренный со сторонами 6 и 30 градусов у основания
половина основания находит через пифагора проведя высоту к основанию, половина а1е1 =6√3, значит все а1е1= 12√3
теперь перейдем к 3D
а1е1 - катет, е1е - тоже катет, а а1е - гипотенуза
а1е1 мы нашли = 12√3
е1е = 6, т.к. все отрезки равны в призме по условию
ну и по пифагору
а1е1^2 = 144*3 + 36 = 468
а1е1=√468
хм, отмет странный какой-то) может где ошибся, но не должен был
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.
b1e= 6√2 там ведь квадрат и по т.пифагора
a1e= сложнее
угол равен 120, равнобедренный треугольник стороны 6
180 - 120 = 60, уже легче, ибо 60\2 = 30, это стороны при основании
сейчас я рассматриваю просто а1е1
получается что треугольник равнобедренный со сторонами 6 и 30 градусов у основания
половина основания находит через пифагора проведя высоту к основанию, половина а1е1 =6√3, значит все а1е1= 12√3
теперь перейдем к 3D
а1е1 - катет, е1е - тоже катет, а а1е - гипотенуза
а1е1 мы нашли = 12√3
е1е = 6, т.к. все отрезки равны в призме по условию
ну и по пифагору
а1е1^2 = 144*3 + 36 = 468
а1е1=√468
хм, отмет странный какой-то) может где ошибся, но не должен был
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.