В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
ΔАВС - равнобедренный , АС - основание , ∠В - противолежащий основанию. По свойствам равнобедренного треугольника: АВ=ВС - боковые стороны равны ∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны. Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный. ∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании . Сумма углов треугольника = 180° х+ 2х+2х=180 5х= 180 х=180/5 = 36° - ∠НАС ∠Н= ∠С= 36×2= 72 ° ⇒ Углы при основании ΔАВС ∠А=∠С= 72° ∠В= 180° - 72°×2= 180° - 144°=36° ответ: ∠В= 36°.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
По свойствам равнобедренного треугольника:
АВ=ВС - боковые стороны равны
∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны.
Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный.
∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании .
Сумма углов треугольника = 180°
х+ 2х+2х=180
5х= 180
х=180/5 = 36° - ∠НАС
∠Н= ∠С= 36×2= 72 ° ⇒
Углы при основании ΔАВС ∠А=∠С= 72°
∠В= 180° - 72°×2= 180° - 144°=36°
ответ: ∠В= 36°.