ответ:ответ:
Всё в разделе "Объяснение"
Объяснение:
Проведём диагональ прямоугольного параллелепипеда
см.
Скрещивающиеся прямые - прямые, не лежащие в одной плоскости.
а) как стороны прямоугольника, значит - общий перпендикуляр и
б) - точка пересечения диагоналей и
- точка пересечения диагоналей и
- прямоугольник, значит и , по свойству диагоналей прямоугольника, тогда
- прямоугольник, значит
и и
общий перпендикуляр и -
в) Через точку проведём в плоскости , и
85+5√119см²
Дано:
ABCA1B1C1- прямая призма.
∆А1В1С1- прямоугольный.
А1В1=5см
А1С1=12см.
Sбок=?
Решение.
По теореме Пифагора найдем второй катет ∆А1В1С1
С1В1²=А1С1²-А1В1²=12²-5²=144-25=119 см
С1В1=√119 см
√25>√119
5>√119 значит
АВА1В1- является квадрат.
А1В1=В1В=АВ=АА1=5см.
ВВ1=5см высота призмы.
Формула нахождения площади боковой поверхности призмы.
Sбок=Росн*h, где Росн- периметр основания, h=BB1 - высота.
Росн=А1В1+В1С1+А1С1=12+5+√119=
=17+√119 см периметр треугольника.
Sбок=(17+√119)*5=85+5√119 см² площадь боковой поверхности призмы.
ответ:ответ:
Всё в разделе "Объяснение"
Объяснение:
Проведём диагональ прямоугольного параллелепипеда
см.
см.
см.
см.
Скрещивающиеся прямые - прямые, не лежащие в одной плоскости.
а) как стороны прямоугольника, значит - общий перпендикуляр и
б) - точка пересечения диагоналей и
- точка пересечения диагоналей и
- прямоугольник, значит и , по свойству диагоналей прямоугольника, тогда
- прямоугольник, значит
и и
общий перпендикуляр и -
в) Через точку проведём в плоскости , и
общий перпендикуляр и -
Объяснение:
85+5√119см²
Объяснение:
Дано:
ABCA1B1C1- прямая призма.
∆А1В1С1- прямоугольный.
А1В1=5см
А1С1=12см.
Sбок=?
Решение.
По теореме Пифагора найдем второй катет ∆А1В1С1
С1В1²=А1С1²-А1В1²=12²-5²=144-25=119 см
С1В1=√119 см
√25>√119
5>√119 значит
АВА1В1- является квадрат.
А1В1=В1В=АВ=АА1=5см.
ВВ1=5см высота призмы.
Формула нахождения площади боковой поверхности призмы.
Sбок=Росн*h, где Росн- периметр основания, h=BB1 - высота.
Росн=А1В1+В1С1+А1С1=12+5+√119=
=17+√119 см периметр треугольника.
Sбок=(17+√119)*5=85+5√119 см² площадь боковой поверхности призмы.