1) Так как по условию сказано, чо угол ACB=90 градусов, то получается, что треугольник ABC - прямоугольный.2) По условию сказано, что СD-медиана, то есть по особому свойству медианы в прямоугольном треугольнике получаем, что AD=DB=DC (Особое свойство медианы: медиана соединяет одну сторону с серединой другой стороны).3) Треугольники ADC и BDC равнобедренные, так как AD=DB=DC. А в равнобедренном треугольнике: если стороны равны, то и углы равны, то есть в треугольнике BDC: угол B = углу DCB = 52 градуса.4) Угол ACD = угол C - угол DCB;Угол ACD = 90 - 52 =38 градусов.ответ: Угол ACD = 38 градусов.
Правильная треугольная пирамида - это пирамида, основанием которой является правильный треугольник, а вершина проецируется в центр основания. Площадь боковой поверхности пирамиды - сумма площадей всех её граней. Все грани правильной пирамиды - равнобедренные треугольники и между собой равны. S DCB=DM*BC:2 DM - высота равнобедренного треугольника, ⇒ DM - медиана, и М - середина стороны ВС. Углы правильного треугольника равны 60° АМ=АВ*sin 60°= 9 ОМ равен радиусу вписанной в правильный треугольник окружности. Этот радиус равен 1/3 высоты основания. ОМ=9:3=3 DM=OM:cos (30°)=2√3 S CDM= 0,5*(6√3)*(2√3)=18 (ед. площади) Площадь боковой поверхности пирамиды в 3 раза больше: S бок=18*3=54 (ед. площади.)
Площадь боковой поверхности пирамиды - сумма площадей всех её граней. Все грани правильной пирамиды - равнобедренные треугольники и между собой равны.
S DCB=DM*BC:2
DM - высота равнобедренного треугольника, ⇒ DM - медиана, и М - середина стороны ВС.
Углы правильного треугольника равны 60°
АМ=АВ*sin 60°= 9
ОМ равен радиусу вписанной в правильный треугольник окружности. Этот радиус равен 1/3 высоты основания.
ОМ=9:3=3
DM=OM:cos (30°)=2√3
S CDM= 0,5*(6√3)*(2√3)=18 (ед. площади)
Площадь боковой поверхности пирамиды в 3 раза больше:
S бок=18*3=54 (ед. площади.)