Знайдіть площу діагонального перерізу, площу бічної поверхні та площу основи правильної чотирикутної призми, у якої бічне ребро дорівнює b, а діагональ призми нахилена до площи основи під кутом a Потрібно сьогодні!
1. В равнобедренном треугольнике углы при основании равны. 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой. 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Докажем свойство 1.
Дано: ΔАВС, АВ = ВС. Доказать: ∠А = ∠С.
Доказательство:
Проведем медиану ВН. АВ = ВС по условию, АН = НС, так как ВН медиана, ВН - общая сторона для треугольников АВН и СВН, ⇒ ΔАВН = ΔСВН по трем сторонам. В равных треугольниках напротив равных сторон лежат равные углы. Значит, ∠А = ∠С.
чтобы разложить векторы по указанным векторам, можно представлять, что "как будто вы вышли из вершины А и идете по ребрам призмы в вершину С и записываете свой путь"...
из точки А могу "пройти" в точку В (это вектор АВ); из В могу "пройти" в точку С (это вектор ВС)...
но перемещение из А в В (вектор АВ) по длине в точности равно
перемещению из С в D (вектору CD), только направление в другую сторону... направление "показывает" знак "минус"
1. В равнобедренном треугольнике углы при основании равны.
2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Докажем свойство 1.
Дано: ΔАВС, АВ = ВС.
Доказать: ∠А = ∠С.
Доказательство:
Проведем медиану ВН.
АВ = ВС по условию,
АН = НС, так как ВН медиана,
ВН - общая сторона для треугольников АВН и СВН, ⇒
ΔАВН = ΔСВН по трем сторонам.
В равных треугольниках напротив равных сторон лежат равные углы.
Значит, ∠А = ∠С.
Объяснение:
Вектор -это направленное перемещение.
чтобы разложить векторы по указанным векторам, можно представлять, что "как будто вы вышли из вершины А и идете по ребрам призмы в вершину С и записываете свой путь"...
из точки А могу "пройти" в точку В (это вектор АВ); из В могу "пройти" в точку С (это вектор ВС)...
но перемещение из А в В (вектор АВ) по длине в точности равно
перемещению из С в D (вектору CD), только направление в другую сторону... направление "показывает" знак "минус"
вектор АВ = вектору DC
вектор DC = "минус" вектор CD