Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
Найдем величину тупого угла ромба. (360-60*2):2=120. Т.к. сумма всех углов равна 360, и противоположные углы равны. Проведем диагональ ромба, соединяющую два его тупых угла. Диагональ ромба является биссектриссой. Т.о. эта диагональ разделила наш ромб на два раносторонних треугольника, т.к. все углы получились по 60 градусов, значит треугольник равносторонний. В равностороннем треугольнике высота является медианой. Медиана делит противоположную сторону на два равных отрезка Значит длины отрезков на которые высота разделила сторону равны 32:2=16
3. В окружность вписан треугольник ABC так, что АВ - диаметр окружности. Найдите углы треугольника, если: а) ВС=134°
АВ - диаметр - > < C=90 < A=67 (вписанный угол) < B=180-90-67=23
Билет № 3
3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника.
Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12
S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4
3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника.
Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4.
В соответствии со свойством касательных, проведенных из одной точки к окружности
AM=AK CK=CN BM=BN
P=3+3+4+4+3+3=20
Проведем диагональ ромба, соединяющую два его тупых угла. Диагональ ромба является биссектриссой. Т.о. эта диагональ разделила наш ромб на два раносторонних треугольника, т.к. все углы получились по 60 градусов, значит треугольник равносторонний. В равностороннем треугольнике высота является медианой. Медиана делит противоположную сторону на два равных отрезка Значит длины отрезков на которые высота разделила сторону равны 32:2=16