В квадрат вписан прямоугольник так, что на каждой стороне квадрата лежит вершина прямоугольника, а его стороны параллельны диагоналям квадрата. Найти стороны прямоугольника, если одна из них на 6 см больше другой, а диагональ квадрата равна 30 см
Сделаем рисунок. Треугольники ВМК, АКТ, МСН и НDT - равнобедренные прямоугольные. ОА=АС:2=15 см Пусть ВК=х Тогда АК=АВ-х По известному свойству гипотенузы равнобедренного прямоугольного треугольника АВ=15√2 АК=15√2 -х КМ=х√2 КТ=(15√2 -х )*√2=30-х√2 По условию КТ-КМ=6 см 30-х√2 -х√2=6 24=2х√2 х=24:2√2=12:√2 Умножим числитель и знаменатель на √2, чтобы избавиться от дроби: х=12:√2=(12*√2):√2*√2х=6√2 КМ=6√2*√2=12 см КТ=30-х√2=30-12=18 см КТ-КМ=18-12=6 см
Вариант решени. Пусть дан треугольник АВС. Угол С=90° СН - высота=24 R=25 Радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы.
АВ=2R=2*25=50
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой:
СН²=АН*ВН ВН=АВ-АН Примем АН равной х, тогда ВН=50-х 24²=х*(50-х) 576=50х-х² х²-50х+576=0 Дискриминант равен: D=b² -4ac=-50² -4·576=196 х₁=(50+√196):2=32 х₂=(50-√196):2=18 Оба корня равны частям АВ. АН=32 ВН=18
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой.
Сделаем рисунок.
Треугольники ВМК, АКТ, МСН и НDT - равнобедренные прямоугольные.
ОА=АС:2=15 см
Пусть ВК=х
Тогда АК=АВ-х
По известному свойству гипотенузы равнобедренного прямоугольного треугольника
АВ=15√2
АК=15√2 -х
КМ=х√2
КТ=(15√2 -х )*√2=30-х√2
По условию КТ-КМ=6 см
30-х√2 -х√2=6
24=2х√2
х=24:2√2=12:√2
Умножим числитель и знаменатель на √2, чтобы избавиться от дроби:
х=12:√2=(12*√2):√2*√2х=6√2
КМ=6√2*√2=12 см
КТ=30-х√2=30-12=18 см
КТ-КМ=18-12=6 см
Пусть дан треугольник АВС.
Угол С=90°
СН - высота=24
R=25
Радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы.
АВ=2R=2*25=50
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой:
СН²=АН*ВН
ВН=АВ-АН
Примем АН равной х, тогда ВН=50-х
24²=х*(50-х)
576=50х-х²
х²-50х+576=0
Дискриминант равен:
D=b² -4ac=-50² -4·576=196
х₁=(50+√196):2=32
х₂=(50-√196):2=18
Оба корня равны частям АВ.
АН=32
ВН=18
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой.
Найдем АС:
АС²=АВ*АН
АС²=50*32=1600
АС=√1600=40
ВС²=АВ*ВН
ВС²=50*18=900
ВС=30
Р=30+40+50=120