В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
3 пары равных треугольников дна рисунке.
Объяснение:
1.
∠AEB = 180° - ∠BED, так как эти углы смежные,
∠AEC = 180° - ∠CED, так как эти углы смежные,
по условию ∠BED = ∠CED, значит и ∠АЕВ = ∠АЕС.
2.
Рассмотрим ΔАЕВ и ΔАЕС:
∠ВАЕ = ∠САЕ по условию,
∠АЕВ = ∠АЕС (доказано в п. 1),
АЕ - общая сторона, значит
ΔАЕВ = ΔАЕС по стороне и двум прилежащим к ней углам.
В равных треугольниках против равных углов лежат равные стороны, следовательно АВ = АС и ВЕ = СЕ.
3.
Рассмотрим ΔBED и ΔCED:
ВЕ = СЕ (доказано в п. 2),
∠BED = ∠CED по условию,
ED - общая сторона, значит
ΔBED = ΔCED по двум сторонам и углу между ними.
Из равенства треугольников следует, что BD = CD.
4.
Рассмотрим ΔABD и ΔACD:
АВ = АС (доказано в п. 2),
BD = CD (доказано в п. 3),
AD - общая сторона, значит
ΔABD и ΔACD по трем сторонам.
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.