Через вершину C меньшего основания BC трапеции ABCD (BC = 13, AD = 7, AC = 16, BD = 12) проведём прямую, параллельную диагонали BD, до пересечения с прямой AD в точке K. В треугольнике ACK AC = 16, CK = BD = 12, AK = AD + DK = AD + BC = 7+13= 20. Поскольку AK^2 = AC^2 + CK^2, то треугольник ACK — прямоугольный. Его площадь равна половине произведения катетов, т.е. S ACK=1/2*16*12=96 Площадь трапеции ABCD равна площади этого треугольника, т.к. равновелики треугольники ABC и CDK (BC = DK, а высоты, опущенные на эти стороны, равны высоте трапеции). ответ:96
Объяснение:
1) Площадь прямоугольника находится по формуле S=a*b где a, и b - стороны прямоугольника.
если одна сторона MN= 2, то вторую обозначим за x и подставим в формулу:
12=2*x
x=6 (это вторая сторона)
Периметр прямоугольника находится по формуле:
P= (a+b)*2
подставляем:
P= (2+6)*2 = 8*2=16.
2) (Что тут нужно найти? сторону?)
Одна сторона = x
Вторая = 3x
P= 16
подставляем в вышеуказанную формулу нахождения периметра:
16=(3x+x)*2
16=8x
x=16/8=2
подставляем:
Одна сторона = 2
Вторая = 3*2=6
3) Острый угол равен 50° =>
по «сумма 2-х боковых углов параллелограмма равна 180°»
тупой угол равен 180°-50°=130°
в следующий раз, если много заданий - ставьте большее кол-во