1. PABCD - правильная пирамида. PO_|_ (ABCD) РА=10 см, РО=8 см, <POA=90° ΔPOA. по теореме Пифагора: AO²=PA²-PO² AO²=10²-8², AO²=36, AO =6 см. ΔADC: AC=2AO, AC=12 см, AD=DC=a по теореме Пифагора: AO²=AD²+CD² 12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41 S бок.=24√41 см²
1. Диагональ параллелограмма делит его на два равных треугольника, а так как противоположные стороны параллелограмма равно, то можно предположить, что периметр этих двух треугольников равен, следовательно 40 делим на 2 равно 20. Периметр это сумма длин всех сторон, а так как две стороны треугольника равны сумме 20, а диагональ по усл. равно 8, то 20+8=28 2.Допустим треугольника АВС. АС- основание. Проведем высоту ВН. Т.к. треугольник равнобедренный, она (высота) будет являться медианой и биссектрисой. Получили два прямоугольных треугольника: АВН и НВС. АН=НС 4дм/2дм=2дм. По теореме Пифагора ищем АН. √4²-2²=√12=2√3 дм. Это и будет являться радиусом описанной окружности. 3. Номер три на фотке P.S. за 3 задания маловато, побольше бы :)
РА=10 см, РО=8 см, <POA=90°
ΔPOA. по теореме Пифагора: AO²=PA²-PO²
AO²=10²-8², AO²=36, AO =6 см.
ΔADC: AC=2AO, AC=12 см, AD=DC=a
по теореме Пифагора: AO²=AD²+CD²
12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см
ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h
h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см
PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см
S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41
S бок.=24√41 см²
2.Допустим треугольника АВС. АС- основание. Проведем высоту ВН. Т.к. треугольник равнобедренный, она (высота) будет являться медианой и биссектрисой. Получили два прямоугольных треугольника: АВН и НВС. АН=НС 4дм/2дм=2дм. По теореме Пифагора ищем АН.
√4²-2²=√12=2√3 дм. Это и будет являться радиусом описанной окружности.
3. Номер три на фотке
P.S. за 3 задания маловато, побольше бы :)