В равнобедренном тр-ке высота, проведенная к основанию, является и биссектрисой, и медианой. Значит по Пифагору боковая сторона равна √(64+36) = 10см. Косинус угла равен отношению прилежащего катета (высота нашего треугольника) к гипотенузе (боковая сторона), то есть Cosα = 8/10 = 0,8. Отсюда α = 36° (по таблице). Значит угол, противоположный основанию нашего треугольника равен 72°, а его косинус (опять же по таблице) равен 0,31. По теореме косинусов квадрат стороны треугольника равен сумме квадратов двух его других сторон минус удвоенное произведение этих сторон на косинус угла между ними. Значит увадрат искомой медианы равен: 100+25-30*0,31 = 125 - 9,3 =116,7. Тогда медиана равна 10,76см. Проверь арифметику!
Объяснение:
В осевом сечении получится равнобедренный ΔКВМ , с АС║КМ, ВН⊥КМ ,S(м)=7π, ВО/ОН=1/3.
S(круга)= π r², 7π=πr² , r=√7 , АО=√7.
ΔАВО подобен ΔКВН по двум углам: ∠А-общий,∠ВАО=∠ВКН как соответственные при АС║КМ, ВК-секущая.Значит сходственные стороны пропорциональны :
АО/КН=1/4=АО/КН
1/4=√7/КН
КН=4√7.
S(нижнего основания конуса)= π(4√7)²=112π .
Полученное сечение(круг) параллельно плоскости основания(кругу). Они подобны с к=1/4. Значит их площади относятся как к²⇒
S(м):S(б)=к² или 7π/S(б)=1/16 , S(б)=7π*16=112π.
= 10см. Косинус угла равен отношению прилежащего катета (высота нашего треугольника) к гипотенузе (боковая сторона), то есть Cosα = 8/10 = 0,8. Отсюда
α = 36° (по таблице). Значит угол, противоположный основанию нашего треугольника равен 72°, а его косинус (опять же по таблице) равен 0,31.
По теореме косинусов квадрат стороны треугольника равен сумме квадратов двух его других сторон минус удвоенное произведение этих сторон на косинус угла между ними. Значит увадрат искомой медианы равен: 100+25-30*0,31 =
125 - 9,3 =116,7.
Тогда медиана равна 10,76см.
Проверь арифметику!