Знайдіть площу розгортки циліндра, якшо висота циліндра дорівнює 15 см, а радіус його основи 5 см.(у відповідь записати лише числове значення без розмірності (наприклад: 126П))
1). Построим описанную окружность с центром в т. М Угол ∠АМС - центральный, опирающийся на ту же дугу АС, что и угол ∠АВС. Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4 CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC => => BC = 2MC*cos15°
1. Верно ли, что всякая теорема имеет обратную? Нет (например, теорема о сумме смежных углов не имеет обратной). 2. Можно ли найти два смежных угла, сумма которых равна 360°? Нет (по соответствующей теореме, сумма двух любых смежных углов равна 90°). 3. Существует ли треугольник, у которого два прямых угла? Нет (если бы у некого треугольника было бы два прямых угла, то по теореме о сумме углов треугольника на два других приходилось бы 0°, что невозможно по аксиоме об измерении углов). 4. Верно ли, что у равностороннего треугольника все стороны равны? Да (по определению равностороннего треугольника). 5. Действительно ли у всякого треугольника есть три вершины? Да (по определению треугольника). 6. Верно ли, что аксиомы необходимо доказывать? Нет (аксиома — утверждение, не требующее доказательств). 7. Действительно ли сумма двух внутренних односторонних углов при параллельных прямых и секущей равна 180°? Да (по свойству углов, образованных при пересечении параллельных прямых секущей). 8. Верно ли, что перпендикулярные прямые пересекаются под прямым углом? Да (по определению перпендикулярных прямых). 9. Действительно ли угол, образованный касательной и радиусом, проведённым в точку касания, равен 90°? Да (по определению касательной). 10. Верно ли, что всякие смежные углы равны? Нет (будут равны лишь те смежные углы, каждый из которых равен 90°).
Угол ∠АМС - центральный, опирающийся на ту же дугу АС,
что и угол ∠АВС.
Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4
CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC =>
=> BC = 2MC*cos15°
В ΔМНС: МН = МС*cos30° = MC*√3/2
Тогда:
2. Можно ли найти два смежных угла, сумма которых равна 360°? Нет (по соответствующей теореме, сумма двух любых смежных углов равна 90°).
3. Существует ли треугольник, у которого два прямых угла? Нет (если бы у некого треугольника было бы два прямых угла, то по теореме о сумме углов треугольника на два других приходилось бы 0°, что невозможно по аксиоме об измерении углов).
4. Верно ли, что у равностороннего треугольника все стороны равны? Да (по определению равностороннего треугольника).
5. Действительно ли у всякого треугольника есть три вершины? Да (по определению треугольника).
6. Верно ли, что аксиомы необходимо доказывать? Нет (аксиома — утверждение, не требующее доказательств).
7. Действительно ли сумма двух внутренних односторонних углов при параллельных прямых и секущей равна 180°? Да (по свойству углов, образованных при пересечении параллельных прямых секущей).
8. Верно ли, что перпендикулярные прямые пересекаются под прямым углом? Да (по определению перпендикулярных прямых).
9. Действительно ли угол, образованный касательной и радиусом, проведённым в точку касания, равен 90°? Да (по определению касательной).
10. Верно ли, что всякие смежные углы равны? Нет (будут равны лишь те смежные углы, каждый из которых равен 90°).