1) KMNB параллелограмм - верно, так как BN║KM по условию и MN║KB как основания трапеции.
2) KMNB ромб - неверно, так как MN ≠ KM по условию.
3) MNPB ромб - верно. MB║NP по условию, MN║BP как основания трапеции, значит MNPB - параллелограмм. Смежные стороны у него равны (MN = NP по условию), значит MNPB - ромб.
4) ∠KBM = ∠MBN - неверно, так как в параллелограмме, который не является ромбом, диагонали не лежат на биссектрисах углов.
5) ∠MBN = ∠NBP - верно так как в ромбе диагонали лежат на биссектрисах его углов.
2) KMNB ромб - неверно, так как MN ≠ KM по условию.
3) MNPB ромб - верно. MB║NP по условию, MN║BP как основания трапеции, значит MNPB - параллелограмм.
Смежные стороны у него равны (MN = NP по условию), значит MNPB - ромб.
4) ∠KBM = ∠MBN - неверно, так как в параллелограмме, который не является ромбом, диагонали не лежат на биссектрисах углов.
5) ∠MBN = ∠NBP - верно так как в ромбе диагонали лежат на биссектрисах его углов.
Объяснение:
1.
В тр-ке против меньшей стороны лежит меньший угол
АВ<ВС<АС
<С<А<В
<С=30
<А=180-(<90+<30)=60
<В=90
2.
<А=90
<В=х
<С=х+40
Сумма углов треугольника равен 180
<А+<В+<С=180
90+х+х+40=180
2х=180-130
2х=50
Х=25
<В=25
<С=25+40=65
3.
<В=180-(<С+<А)=180-(90+70)=20
<BCD=<BCA:2=90:2=45
<CDB=180-(<BCD+<B)=180-(45+20)=115
4.
Боковая сторона b=x
Основание а=х-13
Р=50 см
50=2х+х-13
3х=50+13
3х=63
Х=21
Боковая сторона b=21
Основание а=21-13=8
ответ : 21 ; 21 ; 8