. Так как АВ||СD, то угол ABD равен углу BDC, Треугольники ABD и BDC равнобедренные, так как их боковые стороны AB, BD и BC - радиусы окружности и равны 5. Диагональ АС может быть найдена из треугольник ABC (он тоже равнобедренный, АС - его основание), Надем АС из свойства синуса угла В при вершине данного треугольника. Угол B=β+γ, из тругольника BDC γ=180−2β. Тогда угол B=β+180−2β=180−β. Из равнобедренного треугольника ABC имеем AC=2∗AB∗sin(180−β2)=10∗sin(90−β/2)=10∗cos(β/2). cos(β/2) найдем из равнобедренного треугольника ABD: cos(β/2)=h/AB, где h - высота данного треугольника (обозначена синей линией на рисунке). h=52−32−−−−−−√=4, тогда cos(β/2)=4.5, следовательно, AC=10∗45=8. ответ 8.
Дотична пряма до кола в евклідовій геометрії на площині — пряма, що дотикається до кола тільки в одній точці та не містить внутрішніх точок кола. Грубо кажучи, це пряма, яка проходить через пару нескінченно близьких точок на колі. Дотичні прямі до кола застосовуються у багатьох геометричних побудовах і доведеннях. Так як, дотична пряма до кола є перпендикуляром до радіуса кола, проведеного в точку дотику, то зазвичай теореми в яких розглядаються дотичні прямі, часто використовують у формулюванні такі радіуси або ортогональні кола.
Дотична пряма до кола в евклідовій геометрії на площині — пряма, що дотикається до кола тільки в одній точці та не містить внутрішніх точок кола. Грубо кажучи, це пряма, яка проходить через пару нескінченно близьких точок на колі. Дотичні прямі до кола застосовуються у багатьох геометричних побудовах і доведеннях. Так як, дотична пряма до кола є перпендикуляром до радіуса кола, проведеного в точку дотику, то зазвичай теореми в яких розглядаються дотичні прямі, часто використовують у формулюванні такі радіуси або ортогональні кола.