AC находится по теореме Пифагора и равна √136 1 рисунок.
На 2 рисунке. На луче AA1 отложим отрезок A1K, A1K=AA1. Соединим точку K с точками C и B. Рассмотрим четырехугольник ACKB. CA1=BA1 (так как AA1 — медиана треугольника ABC); AA1=KA1 (по построению).Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ACKB — параллелограмм. По свойству диагоналей параллелограма AK²+BC² = 2*(AC²+AB²) AK²+(√136)²=2*((√136)²+20²) AK²=2*(136+400)-136 AK²=936 AK = 6√26 AA1 = AK/2 = (6√26)/2=3√26 AA1=BB1 = 3√26
Рассмотрим только один случай из трех . ABC-треугольник , опустим высоту CH на сторону AB и AF на сторону BC , центр вписанной окружности лежит в точке пересечения биссектрис, положим что DE || AC опустим перпендикуляры OL=r и OG=r на стороны AB и BC соответственно (r-радиус вписанной окружности). Из подобия треугольников ODL и CAH получаем DO/LO = AC/CH = 1/sin(BAC) DO=r/sin(BAC) Но r=S/p = AB*AC*sinA/(AB+AC+BC) значит DO=AB*AC/(AB+AC+BC) = b*c/(a+b+c) Аналогично OE/OG=AC/CF=1/sin(ACB) OE=r/sin(ACB) OE=AC*BC/(AC+BC+AB) = a*b/(a+b+c) Значит DE=DO+OE=b(a+c)/(b+a+c)
Остальные так же, отрезок параллельный AB || c(a+b)/(a+b+c), BC || a(b+c)/(a+b+c)
1 рисунок.
На 2 рисунке. На луче AA1 отложим отрезок A1K, A1K=AA1. Соединим точку K с точками C и B.
Рассмотрим четырехугольник ACKB. CA1=BA1 (так как AA1 — медиана треугольника ABC); AA1=KA1 (по построению).Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ACKB — параллелограмм.
По свойству диагоналей параллелограма
AK²+BC² = 2*(AC²+AB²)
AK²+(√136)²=2*((√136)²+20²)
AK²=2*(136+400)-136
AK²=936
AK = 6√26
AA1 = AK/2 = (6√26)/2=3√26
AA1=BB1 = 3√26
ABC-треугольник , опустим высоту CH на сторону AB и AF на сторону BC , центр вписанной окружности лежит в точке пересечения биссектрис, положим что DE || AC опустим перпендикуляры OL=r и OG=r на стороны AB и BC соответственно (r-радиус вписанной окружности).
Из подобия треугольников ODL и CAH получаем
DO/LO = AC/CH = 1/sin(BAC)
DO=r/sin(BAC)
Но r=S/p = AB*AC*sinA/(AB+AC+BC) значит
DO=AB*AC/(AB+AC+BC) = b*c/(a+b+c)
Аналогично
OE/OG=AC/CF=1/sin(ACB)
OE=r/sin(ACB)
OE=AC*BC/(AC+BC+AB) = a*b/(a+b+c)
Значит DE=DO+OE=b(a+c)/(b+a+c)
Остальные так же, отрезок параллельный AB || c(a+b)/(a+b+c), BC || a(b+c)/(a+b+c)