воспользуемся следующий признаокм: " если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны".
треугольник авс - равнобедренный.
отсюда следует, что медиана bd - также является биссектрисой угла авс. то есть угол mbd = углу dbn.
по условию bm = bn. bd - общая сторона.
таким образом треугольники mbd = треугольнику dbn по двум сторонам и углу между ними.
800π см³
Объяснение:
Дано:
Цилиндр:
AB=12см
ОК=8см
<О1КО=45°
V=?
ОА=ОВ=R, радиусы.
∆АОВ- равнобедренный треугольник
ОК- высота, медиана и биссектрисса равнобедренного треугольника ∆АОВ
АК=АВ.
АК=АВ/2=12/2=6см
∆ОАК- прямоугольный треугольник
По теореме Пифагора
ОА=√(ОК²+АК²)=√(8²+6²)=√(64+36)=
=√100=10см. Радиус цилиндра.
Sосн=ОА²*π=10²π=100π см².
∆О1ОК- прямоугольный треугольник
<О1ОК=90°
<ОКО1=45°
<ОО1К=45°
∆О1ОК- равнобедренный треугольник, (углы при основании равны)
О1О=ОК=8см высота цилиндра.
V=Sосн*О1О=100π*8=800π см³
ответ:
докажем, что треугольники mbd = треугольнику dbn.
воспользуемся следующий признаокм: " если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны".
треугольник авс - равнобедренный.
отсюда следует, что медиана bd - также является биссектрисой угла авс. то есть угол mbd = углу dbn.
по условию bm = bn. bd - общая сторона.
таким образом треугольники mbd = треугольнику dbn по двум сторонам и углу между ними.
если треугольники равны, то и все стороны равны.
отсюда получаем, что dm = dn.
что и требовалось доказать.
объяснение: