1. МК - средняя линия треугольника, она параллельна одной из его сторон и равна половине этой стороны. Значит: АС = 2 х МК = 2 х 16 = 32 см 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является и медианой, и высотой. Значит: АО = ОС = 16 см 3. Рассмотрим прямоугольный треугольник ОВС. Зная его катеты ОВ и ОС, можно найти его гипотенузу ВС по теореме Пифагора: ВC = √ BO²+ AO² = √30² + 16² = √1156 = 34 см 4. ОК - средняя линия, параллельная АВ, она соединяет середины сторон треугольника и равна половине стороны, параллельной ей. Значит: ОК = АВ / 2 = ВС / 2 = 34 / 2 = 17 см
Основные черты растительности тундры: отсутствие древесного яруса, большая роль низкорослых мелкодревесных долгоживущих, часто вечнозелёных растений – от кустарников и стлаников до стелющихся кустарничков и стланичков. Растут тундровые растения очень долго – у полярной ивы побеги удлиняются за год на 1–5 мм и дают только по 2–3 листа, а лишайники нарастают всего на 1–3 мм за год. Этим объясняется чрезвычайная ранимость тундр. Широко распространены травянистые многолетники (корневищные, кочкообразующие, подушковидные) с укороченными стеблями, кустарнички с деревянистыми стеблями: голубика, черника, брусника и карликовые ивы и берёзки. Двудольные травянистые растения имеют крупные, яркоокрашенные цветы, зацветают практически одновременно, превращая некоторые участки тундры в гигантские цветочные клумбы. Большинство тундровых видов растений характеризуется максимальной активностью в данной зоне, составляя арктический элемент флоры. Велико значение мхов и лишайников, образующих типичные для тундр сообщества с мелкодревесными растениями. Возраст накипных лишайников исчисляется сотнями и даже тысячами лет.
АС = 2 х МК = 2 х 16 = 32 см
2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является и медианой, и высотой. Значит:
АО = ОС = 16 см
3. Рассмотрим прямоугольный треугольник ОВС. Зная его катеты ОВ и ОС, можно найти его гипотенузу ВС по теореме Пифагора:
ВC = √ BO²+ AO² = √30² + 16² = √1156 = 34 см
4. ОК - средняя линия, параллельная АВ, она соединяет середины сторон треугольника и равна половине стороны, параллельной ей.
Значит:
ОК = АВ / 2 = ВС / 2 = 34 / 2 = 17 см