Проведем прямую "а". Отложим на этой прямой произвольный отрезок АВ и проведем к нему серединный перпендикуляр "b". Для этого проведем две окружности с центрами в точках А и В одинаковыми радиусами R=AB. Проведем прямую "b" через точки пересечения этих окружностей. Это и есть серединный перпендикуляр к отрезку АВ. Отметим одну из точек пересечения окружностей как точка "С". Соединим точку А с точкой С. Тогда АС=(1/2)*АС по построению и угол АСН=30°, так как лежит против катета АН, равного половине гипотенузы (АС=АВ). Следовательно, угол АСD=180°-30°=150°. Требуемый угол построен.
В п/у треугольнике НВС НС по теор. Пифагора = корню из 13*13 - 5*5 = 12
Медиана в р/б треуг. явл и высотой,и она делит противоположную сторону на равные отрезки => основание = 24см
Периметр = 24 +13+13 = 50
Площадь равна 1/2 ВН * АС
1/2 * 5 * 24 = 60
2.
S=1/2*6*8=24 см²
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
3.
На фотографии
4.
теорема:Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Исходя из этой теоремы мы получаем: АМ*МВ=СМ*СD
подставляем и находим, 12*10=СМ*СD
СМ*СD=120(1)
так как Dc=23 то мы DC можем представить как CM+DM=23
выражаем отсюда DM, DM=23-CM(2)
теерь второе выражение подставляем в первое:
CM*(23-CM)=120
120=23CM-CM²
CM²-23CM+120=0
решая квадратное уравнение мы получаем: CM=15 DM=8
5.
если в окружность вписан прямоугольный треугольник, то его гипотенуза-это диагональ этой окружности, внашем случае она равна 6,5*2=13. по теореме пифагора найдем неизветсный катет, он равен:
корень из гипотенуза квадрате минус другой катет в квадрате, это равно 13*13-5*5=12
площадь треугольника это половина произведения катетов, то есть 0,5*5*12=30
Отложим на этой прямой произвольный отрезок АВ и проведем к нему серединный перпендикуляр "b". Для этого проведем две окружности с центрами в точках А и В одинаковыми радиусами R=AB. Проведем прямую "b" через точки пересечения этих окружностей. Это и есть серединный перпендикуляр к отрезку АВ.
Отметим одну из точек пересечения окружностей как точка "С".
Соединим точку А с точкой С. Тогда АС=(1/2)*АС по построению и угол АСН=30°, так как лежит против катета АН, равного половине гипотенузы (АС=АВ). Следовательно, угол АСD=180°-30°=150°.
Требуемый угол построен.
1.
АВ и ВС боковые стороны
ВН высота
АВ = ВС = 13
ВН = 5
В п/у треугольнике НВС НС по теор. Пифагора = корню из 13*13 - 5*5 = 12
Медиана в р/б треуг. явл и высотой,и она делит противоположную сторону на равные отрезки => основание = 24см
Периметр = 24 +13+13 = 50
Площадь равна 1/2 ВН * АС
1/2 * 5 * 24 = 60
2.
S=1/2*6*8=24 см²
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
3.
На фотографии
4.
теорема:Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Исходя из этой теоремы мы получаем: АМ*МВ=СМ*СD
подставляем и находим, 12*10=СМ*СD
СМ*СD=120(1)
так как Dc=23 то мы DC можем представить как CM+DM=23
выражаем отсюда DM, DM=23-CM(2)
теерь второе выражение подставляем в первое:
CM*(23-CM)=120
120=23CM-CM²
CM²-23CM+120=0
решая квадратное уравнение мы получаем: CM=15 DM=8
5.
если в окружность вписан прямоугольный треугольник, то его гипотенуза-это диагональ этой окружности, внашем случае она равна 6,5*2=13. по теореме пифагора найдем неизветсный катет, он равен:
корень из гипотенуза квадрате минус другой катет в квадрате, это равно 13*13-5*5=12
площадь треугольника это половина произведения катетов, то есть 0,5*5*12=30
ответ:30