Пусть AD и BE пересекаются в точке K В треугольнике ABD BE - и биссектриса и высота, то есть это равнобедренный треугольник, AB = BD, и BE - так же и медиана, то есть AK = KD; Пусть теперь точка F лежит на продолжении BA за точку A, так что CF II AD. Так как BD - медиана, то в треугольнике FBC AD - средняя линия, а CA - медиана треугольника FBC; само собой, BE так же медиана этого равнобедренного треугольника FBC (если её продолжить за точку E до пересечения с FC в точке G), то есть точка Е делит AC, как это обычно и бывает с медианами: AE/EC = 1/2; Более того, BE/EG = 2/1, то есть BE/BG = 2/3; а BK/KG = 1/1; то есть BK/BG = 1/2; отсюда BK/BE = 3/4; и KE/BE = 1/4; Таким образом, AK = KD = 48; KE = 24; BK = 72; AB = √(48^2 + 72^2) = 24√13; BC = 2*AB = 48√13; AE = √(48^2 + 24^2) = 24√5; AC = 3*AE = 72√5;
Угол при вершине равен 40°. Сумма углов при основании равна 140°, так как две стороны равны, значит нам дан равнобедренный треугольник. Чтобы найти углы при основании отдельно, нам надо сумму углов при основании разделить на 2. Углы при основании равны по 70°.
Рассмотрим треугольник M1P1N1:
Нам дан равнобедренный треугольник по условию, так как по условию две стороны равны. Углы значит при основании будут равны. Один угол при основании равен 70°, значит и другой угол при основании равен 70°. Найдём угол при вершине. Угол при вершине будет равен 180°-(70°+70°)=40°
Теперь посмотрим на оба эти треугольника. Сразу мы можем увидеть, что у этих треугольников углы равны. Значит все стороны пропорциональны.
А мы знаем правило:
Если углы соответственно равны и стороны одного треугольника пропорциональны сходственными сторонами другого треугольника, то такие треугольники подобны.
В треугольнике ABD BE - и биссектриса и высота, то есть это равнобедренный треугольник, AB = BD, и BE - так же и медиана, то есть AK = KD;
Пусть теперь точка F лежит на продолжении BA за точку A, так что CF II AD. Так как BD - медиана, то в треугольнике FBC AD - средняя линия, а CA - медиана треугольника FBC; само собой, BE так же медиана этого равнобедренного треугольника FBC (если её продолжить за точку E до пересечения с FC в точке G), то есть точка Е делит AC, как это обычно и бывает с медианами: AE/EC = 1/2;
Более того, BE/EG = 2/1, то есть BE/BG = 2/3; а BK/KG = 1/1; то есть BK/BG = 1/2; отсюда BK/BE = 3/4; и KE/BE = 1/4;
Таким образом, AK = KD = 48; KE = 24; BK = 72;
AB = √(48^2 + 72^2) = 24√13; BC = 2*AB = 48√13;
AE = √(48^2 + 24^2) = 24√5; AC = 3*AE = 72√5;
..
Объяснение:
Рассмотрим треугольник МРN:
Угол при вершине равен 40°. Сумма углов при основании равна 140°, так как две стороны равны, значит нам дан равнобедренный треугольник. Чтобы найти углы при основании отдельно, нам надо сумму углов при основании разделить на 2. Углы при основании равны по 70°.
Рассмотрим треугольник M1P1N1:
Нам дан равнобедренный треугольник по условию, так как по условию две стороны равны. Углы значит при основании будут равны. Один угол при основании равен 70°, значит и другой угол при основании равен 70°. Найдём угол при вершине. Угол при вершине будет равен 180°-(70°+70°)=40°
Теперь посмотрим на оба эти треугольника. Сразу мы можем увидеть, что у этих треугольников углы равны. Значит все стороны пропорциональны.
А мы знаем правило:
Если углы соответственно равны и стороны одного треугольника пропорциональны сходственными сторонами другого треугольника, то такие треугольники подобны.
ЧТД