Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
Так как трапеция равнобедренная, ее диагонали равны. АС = BD Координаты точки А: 9х - 8у - 25 = 0 х - 2у - 5 = 0 - А - точка пересечения прямых имеет координаты (1; -2). Точка В по условию (3; -4). Уравнение прямой ВС 9х - 8у - 59 = 0, Координаты точки С: 9х - 8у - 59 = 0 х - 2у - 5 = 0 - С - точка пересечения прямых имеет координаты (7,8; 1,4).
\Пусть координаты точки D равны х0 и у0.
Условие равенства диагоналей: (х0 - 3)^2 + (y0 + 4)^2 = (7,8 - 1)^2 + (1,4 + 2)^2 = 57,8 Так как точка D принадлежит и прямой AD, то 9х0 - 8у0 = 25.
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5
АС = BD
Координаты точки А:
9х - 8у - 25 = 0
х - 2у - 5 = 0 - А - точка пересечения прямых имеет координаты (1; -2).
Точка В по условию (3; -4).
Уравнение прямой ВС 9х - 8у - 59 = 0,
Координаты точки С:
9х - 8у - 59 = 0
х - 2у - 5 = 0 - С - точка пересечения прямых имеет координаты (7,8; 1,4).
\Пусть координаты точки D равны х0 и у0.
Условие равенства диагоналей:
(х0 - 3)^2 + (y0 + 4)^2 = (7,8 - 1)^2 + (1,4 + 2)^2 = 57,8
Так как точка D принадлежит и прямой AD, то
9х0 - 8у0 = 25.
Решая систему, получаем: х0 = 5 84/145, у0 = 3 22/145.
ответ: D (5 84/145; 3 22/145)